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ABSTRACT Blue holes are unique marine sinkholes with extreme environments and 
biogeochemical processes. However, our understanding of community dynamics, 
functional profiles, and microbial interactions in blue holes remains limited. We studied 
the extreme environmental response pattern of the microbiome (Symbiodiniaceae, 
bacteria, archaea, and fungi) across 14 depths in the world’s deepest blue hole, the 
Sansha Yongle Blue Hole. The α-diversities of Symbiodiniaceae and archaea were stable 
to extreme environmental conditions, whereas those of bacteria and fungi varied. 
Physical and nutrient factors primarily influenced the β-diversities of these four microbes, 
and there were significant differences in microbial communities among water layers. 
Nine microbial taxa of Cladocopium sp, γ-proteobacteria, Nanoarchaeota, and Ascomy
cota representing the core microbiome occurred in all water layers. These four microbial 
groups exhibited potential interactions, with a positive correlation between Symbio
diniaceae and archaea α-diversities. The microbial biogeochemical profiles exhibited 
notable enrichment characteristics among distinct water layers. Archaea metabolized 
sulfides in the oxic and upper deep layers, while bacteria dominated sulfide decomposi
tion in the chemocline and lower deep layers. These findings suggest the acclimation of 
Symbiodiniaceae to an extreme environment may rely on archaea, as a result of a partial 
niche overlap. The bacterial communities exhibited an environmental response pattern 
consistent with the Anna Karenina effects, whereas fungal communities displayed an 
opposite trend. The wide tolerance of the core microbiome to environmental gradients 
may be linked to evolution, acclimatization, and symbiosis. Bacteria, archaea, and fungi 
have distinct ecological niches and biogeochemical functions in the Sansha Yongle Blue 
Hole.

IMPORTANCE This study comprehensively examined the community dynamics, 
functional profiles, and interactions of the microbiome in the world’s deepest blue 
hole. The findings revealed a positive correlation between the α-diversities of Symbiodi
niaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in 
an extreme environment resulting from a partial niche overlap. The negative association 
between the α-diversity and β-diversity of the bacterial community suggested that the 
change rule of the bacterial community was consistent with the Anna Karenina effects. 
The core microbiome comprised nine microbial taxa, highlighting their remarkable 
tolerance and adaptability to sharp environmental gradient variations. Bacteria and 
archaea played significant roles in carbon, nitrogen, and sulfur cycles, while fungi 
contributed to carbon metabolism. This study advanced our understanding of the 
community dynamics, response patterns, and resilience of microorganisms populating 
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the world’s deepest blue hole, thereby facilitating further ecological and evolutional 
exploration of microbiomes in diverse extreme environments.

KEYWORDS microbiome community dynamics, response pattern, tolerance threshold, 
extreme environment, deepest blue hole

B lue holes belong to the ecosystem of anchialine caves or cenotes, which exhibit 
a deep blue-colored, water-filled, vertical karst opening in carbonate rocks (1). 

Numerous blue holes were formed approximately 2.5 million years ago during the 
Quaternary period owing to a rise in global sea levels and the dissolution or collapse 
of carbonate rocks (2–5). Therefore, blue holes are potential time capsules that contain 
records of archive regional and global environmental events (1, 6–12). Biogeochemi
cal cycles, hydrologic conditions, and biocoenotic dynamics of blue holes have been 
explored worldwide (5, 13, 14). Many blue hole ecosystems contain multiple pycnoclines 
(15), and the environmental, geochemical, and ecological characteristics of these blue 
holes are similar to those of extreme environments. Generally, blue holes have unique 
geomorphological characteristics, and water exchange and vertical mixing are limited, 
leading to transitions from aerobic to anaerobic conditions occurring within a few 
dozen to several hundred meters without impacting the external environments (16–18). 
Vertical decline of photosynthesis and accumulation of sulfides result in the formation of 
extreme environmental conditions in the intermediate and deep-water layers of a blue 
hole (7, 16, 19). Notably, low oxygen availability, less light, and high sulfide concentra
tions in these blue hole ecosystems were similar to those of deep-sea hydrothermal 
vents (20–23), dark ocean regions (24, 25), hypersaline environments (26), and terrestrial 
geothermal springs (27), all of which encompass recognized extreme environments (28). 
Thus, the habitat of blue holes provides rapidly evolving and diverse ecological niches 
with an abundance of microorganisms. The Bahamas blue hole, characterized by anoxic 
and microoxic conditions, exhibits a high abundance of the anoxygenic phototroph 
clade, Chlorobi, and a low presence of Deltaproteobacteria. These major clades harbor 
distinct microbial biomass and species compositions, as demonstrated by substantial 
differences (29). Additionally, the Hospital hole also includes chemocline and sulfidic 
anoxic layers. The unique functions and interaction of the microbial community have 
notable differences in each layer, and there is evidence of syntrophic relationships 
between methane oxidizers, methanogens, and sulfate reducers (14). The Shark Bay blue 
hole (30), Lucayan Cavern (31), Bjejajka Cave (32), Lenga Pit (32), and Vanuatu anchialine 
cave (33) have also been explored, revealing a high level of phylogenetic diversity, 
distinct community structure, and diverse ecological functions of microbes (5, 13, 30). 
Therefore, enclosed offshore blue holes can be used to investigate microbial community 
dynamics, extreme environmental adaptability, and biogeochemical contributions under 
natural conditions.

The Sansha Yongle Blue Hole (SYBH), which is a water-filled karst opening in the 
intertidal reef platform of the eastern Yongle atoll in the South China Sea (34, 35), is 
the deepest (301.19 m) blue hole in the world (Fig. 1a and b). The surface coral reef 
(0–17 m) and carbonate rock (17–301.19 m) constitute the SYBH, which was formed in 
31–29 kyr before present (BP) (35). The SYBH is an enclosed vertical ecosystem, and its 
water column is strongly stratified and can be divided into oxic (0–80 m), chemocline 
(80–115 m), and deep anoxic water layers (115–301.19 m; Fig. 1c) (36). Thus, SYBH 
provides a natural laboratory to determine extreme environmental response patterns 
and tolerance of reef and other marine microorganisms. The Dinophyceae dominated 
in eukaryotic microalgae community in the SYBH (37), the abundance of which can 
most likely be attributed to the contribution of Symbiodiniaceae that can be found 
in coral reef water and are acquired by coral horizontal transmission (38–41). Symbio
diniaceae are distributed in tropical, subtropical, and temperate oceans and exhibit 
wide environmental tolerance thresholds, diverse symbioses, and ecological functions 
(42–44). Symbiodiniaceae also exhibit strong mutualistic or epiphytic abilities and have 
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the potential to interact with marine microbes (40, 43, 44). Symbiodiniaceae established 
numerous interactions with bacteria, and the increase in their α-diversity can lead to 
a decline in the complexity interaction network of the microbial community (45). Even 
pure culture strains of Symbiodiniaceae harbor specific bacteria taxa and engage in 
interactions (46–48). Although the response patterns of Symbiodiniaceae to variations 
in temperature (41, 45, 49–51), pH (52, 53), salinity (54–56), and light intensity (57) have 
been determined, their adaptive and microbial interaction characteristics in extreme 
environments with low light, low oxygen availability, and high sulfide concentrations 
below 50 depths in SYBH remain unknown (36). Additionally, previous studies have 
focused on the development and evolution (35, 58) and the hydrochemical properties 
(36) and diversities of bacteria and archaea, such as potential animal and plant patho
genic bacteria (Vibrio) (59–62), distribution of benthic foraminifera and other eukaryotes 
(37, 63), and biogeochemical cycles (carbon cycling) (34) of the SYBH, and suggested 
that diverse microorganisms may play a key role in the ecological function of water 
columns. Nevertheless, it remains unclear how the core microbiome, changing roles, 
interactions, and tolerance limits are associated with the ability of microbial communities 
to respond to extreme environments and the gradient variations in SYBH. Moreover, 
fungi are phylogenetically and functionally diverse ubiquitous components of ocean 
ecosystems, but the diversity, community structure, functional profiles, and environmen
tal adaptability of this key ecologically functional group remain unclear (64).

This study aimed to comprehensively examine the diversity variations, community 
dynamics, core taxa, interactions, and ecological functions of the microbiome among the 
oxic, chemocline, and anoxic water layers across 14 depths in the SYBH; this will enhance 

FIG 1 The location of the Sansha Yongle Blue Hole in the South China Sea. (a) The SYBH located in Xisha Islands, (b) which developed in reef platform of Yongle 

atoll. (c) The sampling depths of the SYBH. The map in panel a is republished from Frontiers in Microbiology (65).
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our comprehension of the tolerance threshold and adaptability of marine microorgan
isms in response to extreme environments characterized by low oxygen availability, weak 
light, and high sulfide concentrations.

RESULTS

The community composition of microbiome

Based on the local alignment of internal transcribed spacer region 2 (ITS2) reads, all 
genera and subclades of Symbiodiniaceae, except free-living Effrenium, were identified. 
The Symbiodiniaceae community was dominated by Symbiodinium (50.4% ± 23.8%), 
Cladocopium (26.2% ± 22.9%), Fugacium (8.1% ± 8.8%), and Breviolum (6.9% ± 5.7%) 
in the SYBH (Fig. 2a). Gerakladium (4.7% ± 13.3%) dominated the Symbiodiniaceae 
community at the 50 m depth (48.9%), while Durusdinium (3.1% ± 8.2%) had the highest 
relative abundance at the 110–120 m depth (110 m: 9.9%; 120 m: 28.6%). Regarding 
the bacterial community, 45 phyla, 104 classes, 247 orders, 397 families, 686 genera, 
1,090 presumptive species, and 3,229 amplicon sequence variants (ASVs) were identified. 
Proteobacteria (66.6% ± 17.4%), Campilobacterota (10.7% ± 20.2%), Bacteroidetes (7.3% 
± 9.9%), and Actinobacteria (7.0% ± 8.3%) dominated the bacterial community in the 
SYBH (Fig. 2b). Proteobacteria were widely distributed in the SYBH and dominated the 
bacterial communities in all water layers. Actinobacteriota and Bacteroidota showed 
high relative abundance at depths of 0–95 m (12.2% ± 7.5%) and 0–120 m (9.2% ± 
10.4%) in the shallow water layers of the SYBH, respectively, while Campilobacterota 
dominated the bacterial communities in deep-water layers (150–250 m, 47.4% ± 9.9%). 
Sulfide-consuming Desulfobacterota were mainly distributed in the intermediate and 
deep layers from 90 to 120 m (3.3% ± 1.9%), but Nitrospinota were highly abundant 
in the shallow and intermediate layers at 50–90 m (2.1% ± 0.9%). A total of 6 phyla, 
9 classes, 10 orders, 11 families, 11 genera, 14 presumptive species, and 3,797 ASVs of 
archaea were found in the SYBH. Nanoarchaeota and Agenigamarchaeota dominated 
the archaeal community (Fig. 2c), which were all aligned with the DPANN superphyla. 
Nanoarchaeota were almost ubiquitous in the SYBH water (56.5% ± 32.7%). However, 
Agenigamarchaeota mainly lived in shallow (0–20 m; 2.9% ± 1.5%) and deep water 
(110–250 m; 3.2% ± 2.5%) regions. Numerous unclassified archaeal phylotypes were 
distributed, which had a high relative abundance in all water layers (41.7% ± 31.4%), 
especially in the deep-water area (150–250 m; 85.8% ± 11.6%). Regarding fungi, 4 phyla, 
12 classes, 20 orders, 27 families, 27 genera, 30 presumptive species, and 7,888 ASVs were 
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FIG 2 The community composition of microbiome in Sansha Yongle Blue Hole. The taxonomic profile of the abundant communities of (a) Symbiodiniaceae, 

(b) bacteria, (c) archaea, and (d) fungi in distinct water layers (0–250 m) in the SYBH.
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identified in the SYBH. The fungal community was dominated by Ascomycota, Basidio
mycota, and Chytridiomycota (Fig. 2d). Ascomycota (30.2% ± 22.2%) and Basidiomycota 
(7.7% ± 7.3%) were widely distributed in the SYBH, but a high abundance of Chytridio
mycota was identified in the water layers of 50–250 m depth (7.9% ± 7.4%). Similar 
to the archaeal community, unclassified fungal phylotypes were widely distributed and 
had a high relative abundance in all water layers of the SYBH (55.9% ± 21.6%). There 
were significant differences between the community compositions of Symbiodiniaceae 
[permutation multifactorial analysis of variance (PERMANOVA): R2 = 0.6926; P = 0.0001], 
bacteria (PERMANOVA: R2 = 0.9958; P = 0.0001), archaea (PERMANOVA: R2 = 0.8547; P 
= 0.0001), and fungi (PERMANOVA: R2 = 0.7661; P = 0.0001) in the distinct water layers 
of the SYBH (Fig. 3), indicating that the microbial community composition showed high 
flexibility and variability.
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The changing rules of α-diversity and β-diversity of microbiome

The α-diversity of Symbiodiniaceae was influenced by diverse environmental factors 
in the SYBH (Table 1; Fig. 4a). Among the physical factors, only pH, concentration 
of dissolved oxygen (DO), and turbidity (Turb) showed a positive association with 
the Shannon H’ of Symbiodiniaceae, while the anaerobic products of methane (CH4), 
sulfide, and nitrous oxide (N2O) were not associated with the α-diversity of Symbiodinia
ceae. The Shannon H’ index value of Symbiodiniaceae was unaffected by all nutritive 
factors. The concentration of dissolved organic carbon (DOC) showed a significantly 
positive correlation with the α-diversity of Symbiodiniaceae, while there were no obvious 
associations between nitrate (NO3

−) and suspended particulate matter (SPM) and the 
Shannon H’ of Symbiodiniaceae (Fig. 4a). The β-diversity of Symbiodiniaceae showed 
high flexibility in response to diverse environmental factors. Physical, anaerobic, and 
nutrient factors, except for salinity, DOC, and particulate organic carbon (POC), were 
significantly associated with the β-diversity of Symbiodiniaceae in the SYBH. Tempera
ture, DO, pH, and concentrations of N2O, nitrite (NO2

−), NO3
−, and SPM increased the 

dispersal degree of the Symbiodiniaceae community, while the β-diversity of Symbio
diniaceae showed a significantly negative correlation with depth, Turb, CH4, sulfide, 
ammonium (NH4

+), silicate (SiO3
2-), phosphate (PO4

3-), and chlorophyll a (Chl a). Variation 
partitioning analysis (VPA) showed that the independent effects of nutrient products 
were the largest contributor to the variation in Symbiodiniaceae community structure 
(25.15%) (Fig. 4b).

Regarding the bacterial community, both α- and β-diversity showed high flexibility in 
response to environmental influences. Although temperature, DO, pH, N2O, NO2

−, NO3
−, 

NH4
+, DOC, and Chl a showed significantly positive correlations with the Shannon H’ 

of bacteria, the increase in depth, Turb, and the concentration of CH4, sulfide, SiO3
2−, 

and PO4
3− decreased the α-diversity of bacteria in the SYBH (Fig. 4c). Additionally, the 

changes in α- and β-diversity were notably different under environmental effects, except 
for that of NH4

+ and sulfide. The increase in α-diversity accompanied a decrease in 
the dissimilarity of the bacterial community. Physical, anaerobic, and nutrient factors 
explained 95.48% of the changes in the bacterial community in seawater from the SYBH, 
and the degree of explanation was the highest in the microbial community in the SYBH 
(Fig. 4d). The combined effect of physical and nutrient factors contributed to the highest 
percentage of variation (35.70%) in the community structure of bacteria in the SYBH.

The changes in α- and β-diversities of archaea were similar to those of Symbiodi
niaceae in the SYBH. Correlations between Shannon H’ of archaea and environmental 
factors were weak, except for DO and pH among physical factors and NO3

−, DOC, SPM, 
and Chl a among nutritional factors (Fig. 4e). The α-diversity of archaea was not affected 
by changes in CH4, sulfide, and N2O concentrations. Correlations between the environ
mental factors and β-diversity of the archaeal community were consistent with those 
of Symbiodiniaceae, except for the concentration of Chl a. The degree of dispersion of 
the archaeal community was positively associated with temperature, DO, pH, and the 
concentrations of N2O, NO2

−, NO3
−, SPM, and Chl a, whereas an increase in depth, Turb, 

and the concentrations of CH4, sulfide, NH4
+, SiO3

2−, and PO4
3− decreased the β-diversity 

of archaea in the SYBH. VPA also showed that the independent effect of nutrient factors 
accounted for the highest percentage of variation in the archaeal community in the SYBH 
(29.1%; Fig. 4f).

At the per-sample level, the changing rules in α- and β-diversity of fungi in the SYBH 
were highly correlated (Fig. 4g), indicating that an increase in α-diversity would decrease 
the stability of the fungal community. The α- and β-diversity of fungi showed high 
flexibility in responding to changes in physical, anaerobic, and nutrient factors in the 
SYBH. In addition to NO2

−, NO3
−, and SPM, other environmental factors also affected the 

Shannon H’ of fungi. Moreover, the β-diversity of fungi was not significantly associated 
with the concentrations of NO3− and SPM, which were affected by other environmental 
factors. VPA showed that the combined effect of physical and nutrient products made 
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the highest contribution (30.78%) to the variation in fungal community structure in the 
SYBH (Fig. 4h).

1.00

0.80

0.60

0.40

0.20

0.00

0.20

0.40

0.60

0.80

1.00

p<0.05

p<0.01

p<0.001

p-value

β-diversity

α-diversity
Positive

Negative

Depth Temp Sal DO pH Turb CH4 Sulfide N2O NO2 NO3 NH4 SIO3 PO4 DOC POC SPM CHL
-

P
e
a
rs
o
n
s
 (
r)

1.00

0.80

0.60

0.40

0.20

0.00

0.20

0.40

0.60

0.80

1.00
p<0.05

p<0.01

p<0.001

p-value

α-diversity
Positive

Negative

Depth Temp Sal DO pH Turb CH4 Sulfide N2O NO2 NO3 NH4 SIO3 PO4 DOC POC SPM CHL
-

β-diversity

P
e
a
rs
o
n
s
 (
r)

Depth Temp Sal DO pH Turb CH4 Sulfide N2O NO2 NO3 NH4 SIO3 PO4 DOC POC SPM CHL
-

1.00

0.80

0.60

0.40

0.20

0.00

0.20

0.40

0.60

0.80

1.00 α-diversity

β-diversity

Positive

Negative

p<0.05

p<0.01

p<0.001

p-value

P
e
a
rs
o
n
s
 (
r)

1.00

0.80

0.60

0.40

0.20

0.00

0.20

0.40

0.60

0.80

1.00

Depth Temp Sal DO pH Turb CH4 Sulfide N2O NO2 NO3 NH4 SIO3 PO4 DOC POC SPM CHL

α-diversity

β-diversity

p<0.05

p<0.01

p<0.001

p-value

-

Positive

Negative

P
e
a
rs
o
n
s
 (
r)

(a) Symbiodiniaceae

(c) Bacteria

(e) Archaea

(g) Fungi

Anaerobic

Nutrient

Physical

Residual=0.4038

0

0

(b) Symbiodiniaceae

0

(f) Archaea

Residual=0.057

0

Residual=0.0452

(d) Bacteria

0

(h) Fungi

Residual=0.1746

0

0

0

0.1156

0.1913

0.1283

0.0988

0.2515

Anaerobic

Nutrient

Physical

0.0591

0.3026

0.3570.1666

0.1596

Anaerobic

Nutrient

Physical

0.291

0.0045

0.2374

0.1755

0.0644

Anaerobic

Nutrient

Physical

0.2975

0.3078

0.0745

0.1653

0.1334
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The core microbiome

The Cladocopium C1 subclade (ASV7; 25.9%) was the dominant core taxon in the 
Symbiodiniaceae community of the SYBH (Fig. 5a). However, there were no significant 
differences between the relative abundances of C1 subclade in the Symbiodiniaceae 
communities at different depths [general linear model (GLM): F = 1.772; P > 0.05; Fig. 5e]. 
Two core bacterial taxa, Alteromonas sp. (ASV1113B) and Ralstonia sp. (ASV971B), were 
consistently present across all water layers in the SYBH. The core bacterial microbiome, 
which comprised rare bacterial members in the SYBH, accounted for only 1.3% of the 
total bacterial abundance (Fig. 5b). Nevertheless, the relative abundances of these core 
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bacteria varied substantially across different depths. Alteromonas sp. had the highest 
relative abundance in the 10-m aqueous layer (GLM: F = 65.823; P < 0.05; Fig. 5f), 
whereas the relative abundance of Ralstonia sp. on the sea surface (0 m) was significantly 
higher than that at other depths (GLM: F = 3.728; P < 0.05; Fig. 5g). Core archaea taxa 
were dominant members of the archaeal community in the SYBH, with ASV1282A and 
ASV1238A accounting for 25.0% and 25.9% of the archaeal abundance, respectively (Fig. 
5c). All members of the core archaeal microbiome were aligned with the unclassified 
Woesearchaeales, which belongs to phylum Nanoarchaeota. Regarding the dynamics of 
core archaea, the relative abundance of ASV1282A sharply increased from 3.4% ± 2.9% 
(10 m) to 82.6% ± 1.2% (80 m) above 80–85 m. However, it gradually declined from 
56.9% ± 1.6% (90 m) to 0.3% ± 0.1% (250 m) in the SYBH (GLM: F = 89.478; P < 0.05; 
Fig. 5h). The trend of variation in ASV1238A abundance was similar to that of ASV1282A, 
which increased sharply, starting from the sea surface (0 m) to a depth of 85 m and 
reaching a maximum (51.0% ± 2.5%; 95 m) at a depth of 95–100 m. However, the relative 
abundance of ASV1238A sharply decreased from 26.2% ± 2.6% at 110 m to 1.1% ± 0.1% 
(250 m) below 110 m (GLM; F = 362.41; P < 0.05; Fig. 5i). Interestingly, there were four 
core fungi taxa present at all SYBH depths. Excluding Mycosphaerella tassiana (ASV22F; 
0.5%), the remaining core fungal taxa dominated in the fungal community (4.6%–7.7%; 
Fig. 5d). The relative abundance of Mycosphaerella tassiana was homogeneous across 
distinct water layers of the SYBH (GLM: F = 1.066; P > 0.05; Fig. 5j). The abundance of 
Recurvomyces sp. (ASV2F) in the deep-water area (95, 200, and 250 m) was significantly 
higher than that in the shallow water regions of the SYBH (0–50 m; GLM: F = 4.677; P 
< 0.05; Fig. 5k). Conversely, Penicillium cosmopolitanum (ASV7F) and unclassified fungi 
(ASV9F) exhibited similar patterns of variation, with low relative abundances observed 
in the dark deep-water area of the SYBH. The relative abundance of P. cosmopolitanum 
reached its maximal value at a depth of 0 m from the sea surface, sharply declining from 
67.9% ± 5.8% at 0 m to 0.6%–11.1% below 10 m and then remaining relatively constant 
until the bottom of the SYBH (GLM: F = 362.597; P < 0.05; Fig. 5l). The relative abundance 
of ASV9F also peaked at a depth of 10 m and was significantly higher than that in other 
water layers of the SYBH (GLM: F = 243.652; P < 0.05; Fig. 5m).

The enrichment characteristics of ecological functions of microbiome

The bacterial community was enriched in chemoheterotrophy and aerobic chemohe
terotrophy functions at 10 m in the SYBH [linear discriminant analysis (LDA): 5.6–5.7; P 
< 0.05; Fig. 6a] but photoautotrophy and phototrophy at 20 and 95 m (LDA: 2.5–5.3; P 
< 0.05; Fig. 6a). Nitrate metabolism in the bacterial community was enriched at 95 and 
250 m (LDA: 3.7–5.0; P < 0.05; Fig. 6a) and sulfur metabolism at 95, 110, and 250 m 
(LDA: 3.6–5.4; P < 0.05; Fig. 6a). Bacterial functional profiles of fixed or metabolized 
carbon were highly abundant at 20, 95, and 120 m (LDA: 3.7–4.4; P < 0.05; Fig. 6a) and 
carbohydrate metabolism at 0, 10, 20, 80, 120, and 150 m (LDA: 2.3–3.2; P < 0.05; Fig. 
6a). In the archaeal community, photosynthesis was enriched at 10 m (LDA: 2.9; P < 
0.05; Fig. 6b). Regarding the nitrogen cycling processes, only one enriched functional 
profile (nitrogen metabolism; ko00910) was observed in the archaeal community at 95 m 
(LDA: 3.0; P < 0.05; Fig. 6b). The archaeal community had a high abundance of sulfur 
metabolism traits at 50 m and 150 m (LDA: 2.9–3.3; P < 0.05; Fig. 6b), which differed 
from that of the bacterial community in the SYBH. Carbon metabolism and fixation were 
also enriched in the archaeal community at 50 m and 150 m (LDA: 3.8–4.2; P < 0.05; Fig. 
6b). Similar to the bacterial community, the archaeal community was also enriched in 
carbohydrate metabolism at 0 m, 10 m, 50 m, 95 m, 100 m, and 150 m (LDA: 2.6–3.4; 
P < 0.05; Fig. 6b). FUNGuild analysis showed that the fungal community at 85 m was 
mainly colonized by undefined saprotrophic fungi (LDA: 5.8; P < 0.05; Fig. 6c) and plant 
pathogens and animal pathogen-plant pathogen-undefined saprotrophic fungi were 
enriched in the fungal community at 110 m (LDA: 5.1–5.2; P < 0.05; Fig. 6c). Fungi with 
unknown functions were dominant in the 20-m fungal community in the SYBH (LDA: 6.0; 
P < 0.05; Fig. 6c).
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The microbial interaction and network structure

The results of the Shannon index correlation analysis indicated that there was a 
significant positive correlation between the α-diversities of archaea and Symbiodiniaceae 
(Pearson, R2 = 0.264, P < 0.001; Fig. 7a; Table 2), while the α-diversities of bacteria and 
fungi were not associated with those of archaea and bacteria in the SYBH. Shannon H’ 
index of bacteria showed a significantly negative correlation with that of fungi (Pearson, 
R2 = 0.310, P < 0.001; Fig. 7b; Table 2). Partial correlation analysis showed that variation in 
the α-diversities of bacteria and fungi did not affect the positive correlation between the 
α-diversities of archaea and Symbiodiniaceae (Pearson, R2 = 0.251, P < 0.001; Table 2); the 
negative correlations between bacteria and fungi were also unaffected by changes in the 
α-diversities of bacteria and Symbiodiniaceae (Pearson, R2 = 0.346, P < 0.001; Table 2).

The outcome of the SYBH ecosystem processes is governed by a complex network 
of direct and indirect interactions between microorganisms. There were abundant 
interactions among Symbiodiniaceae, bacteria, archaea, and fungi in the SYBH, with 
all water layers displaying different microbiota interaction networks (Fig. 8). Fungal 
ASVs dominated the network in all water layers and played the most important role 
in microbial interactions in the SYBH (Fig. 8a). Fungi also dominated the microbial 
hub community in all water layers, and many unclassified fungi were key drivers, 
which showed high relative abundances (21.8%–80.6%) in the microbiota interaction 
network (Fig. 8b). The members of Ascomycota, Basidiomycota, Chytridiomycota, and 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Unknown

Undefined Saprotroph

Animal Pathogen-Plant Pathogen-Undefined Saprotroph

Plant Pathogen

7.0 6.0 5.0 4.0 3.0 2.0 1.0

0 m

10 m

20 m

50 m

80 m

85 m

90 m

95 m

100 m

110 m

120 m

150 m

200 m

250 m

(c) Fungi

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.07.0 6.0 5.0 4.0 3.0 2.0 1.0

(a) Bacteria

Fermentation

Chemoheterotrophy

Aerobic Chemoheterotrophy

Aromatic Compound Degradation

Photoautotrophy

Phototrophy

Nitrate Reduction

Dark Oxidation of Sulfur Compounds

Dark Sulfide Oxidation

Animal Parasites or Symbionts

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.07.0 6.0 5.0 4.0 3.0 2.0 1.0

Carbon metabolism (ko01200)

Pyruvate metabolism (ko00620)

Sulfur relay system (ko04122)

Carbon fixation in photosynthetic organisms (ko00710)

Pentose phosphate pathway (ko00030)

Butanoate metabolism (ko00650)

Citrate cycle (TCA cycle) (ko00020)

Propanoate metabolism (ko00640)

Glycolysis / Gluconeogenesis (ko00010)

C
a

rb
o

h
y
d

ra
te

 m
e

ta
b

o
lis

m

C5-Branched dibasic acid metabolism (ko00660)

Amino sugar and nucleotide sugar metabolism (ko00520)

Nitrogen metabolism (ko00910)

Sulfur metabolism (ko00920)

Carbon fixation pathways in prokaryotes (ko00920)

Ascorbate and aldarate metabolism (ko00053)

Galactose metabolism (ko00052)

Pentose and glucuronate interconversions (ko00040)

Starch and sucrose metabolism (ko00500)

Photosynthesis (ko00195)

Glyoxylate and dicarboxylate metabolism (ko00630)

(b) Archaea

Legend

C
a

rb
o

h
y
d

ra
te

 m
e

ta
b

o
lis

m

Carbohydrate metabolism

Propanoate metabolism (ko00640)

Butanoate metabolism (ko00650)

Pentose and glucuronate interconversions (ko00040)

Galactose metabolism (ko00052)

Pyruvate metabolism (ko00620)

Ascorbate and aldarate metabolism (ko00053)

Glyoxylate and dicarboxylate metabolism (ko00630)

Photosynthesis - antenna proteins (ko00196)

Carbon metabolism (ko01200)

Glycolysis / Gluconeogenesis (ko00010)

Inositol phosphate metabolism (ko00562)

Carbon fixation pathways in prokaryotes (ko00720)

Photosynthesis (ko00195)

Sulfur relay system (ko04122)

Starch and sucrose metabolism (ko00500)

Pentose phosphate pathway (ko00030)

Amino sugar and nucleotide sugar metabolism (ko00520)

Fructose and mannose metabolism (ko00051)

Carbon fixation in photosynthetic organisms (ko00710)

One carbon pool by folate (ko00670)

Citrate cycle (TCA cycle) (ko00020)

C5-Branched dibasic acid metabolism (ko00660)

Sulfur metabolism (ko00920)

Nitrogen metabolism (ko00910)

C
a

rb
o

h
y
d

ra
te

 m
e

ta
b

o
lis

m

C
a

rb
o

h
y
d

ra
te

 m
e

ta
b

o
lis

m

FIG 6 Enrichment characteristics of functional traits in microbiome from the Sansha Yongle Blue Hole. Enrichment functional traits with LDA scores of 2 or 

greater in microbial communities of (a) bacteria, (b) archaea, and (c) fungi among different water layers. The functional profiling predicting of bacteria was used 

to PICRUST 2 and FAPROTAX, and those of archaea only was used to PICRUST 2. The function of fungi communities was predicted by FUNGuild.
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Agaricomycetes were key drivers in the microbial interaction network in the SYBH; 
however, many fungal hubs are often present in extreme natural environments. 
Recurvomyces sp., Penicillium, and Mycosphaerella were identified in the core microbiome 
of SYBH. Archaea, as network hubs, played an important role in microbial interactions, a 
high degree of which was shown by Nanoarchaeota in shallow water layers (0, 10, and 
50 m) of the SYBH. Many unclassified archaea hubs were also identified at 0–20, 95 m, 
110, and 250 m. The contribution of the active bacterial community to the microbial 
interaction network in the deep-water layers of the SYBH was limited, with a high 
abundance of bacteria being identified above the 100-m water column. Flavobacteria
ceae (0 m), Vibrio, AEGENA-169 marine group, Rhodobacteraceae, Cohaesibacter, and 
Sva0996 marine groups were key drivers in the shallow microbiome, whereas Magneto
spiraceae at 85 m and Chromatiale and Enterovibrio at 100 m also acted as microbial 
network hubs in the intermediate water layers. Symbiodiniaceae, as a key interactional 
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FIG 7 The correlations of alpha diversity among microorganism in the Sansha Yongle Blue Hole. (a) Relationship of Shannon index (H′) between archaea and 

Symbiodiniaceae in the SYBH. (b) Correlation of Shannon index (H′) between fungi and bacteria in the SYBH.

TABLE 2 Correlation and partial correlation statistics among Symbiodiniaceae, bacteria, archaea, and 
Fungi

Microbial taxa Symbiodiniaceae Bacteria Archaea Fungi

Symbiodiniaceae r – – – –
R2 – – – –
P – – – –
N – – – –

Bacteria r 0.084 – – –
R2 0.007 – – –
P 0.54 – – –
N 56 – – –

Archaea r 0.514/0.501a 0.211 – –
R2 0.264/0.251a 0.049 – –
P >0.001/>0.001a 0.119 – –
N 56 56 – –

Fungi r 0.42 0.557/0.588a 0.74 –
R2 0.176 0.310/0.346a 0.548 –
P 0.758 >0.001/>0.001a 0.588 –
N 56 56 56 –

aBold indicates statistical significance after Pearson correlation test, and adjust r, R2, and P after partial correlation 
correction marked by asterisk. "-" means no data.
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hub, was widely distributed in the SYBH, with the highest total degree in the 85-m water 
layer. Cladocopium had a high degree at 0 (C15), 50 (C1ca, Cspc), 85 (C3u, Cspc, C1, 
C1ca), 95 (C1m), 100 (C72), 110 (C3u), and 200 m (C1f ), whereas Durusdinium (D11) as 
a microbial hub was only identified at 120 m. Fugacium and H2 were the key drivers of 
microbial communities at 85 and 120 m, respectively. Moreover, the index of microbial 
interaction network complexity in the SYBH had three peaks (Fig. 8c). The first highest 
value of complexity was observed at 0 m in the shallow layer/oxic layer, whereas the 
microbial community showed the second highest complexity value at 110 m in the 
intermediate layer/chemocline. The highest microbial interaction network complexity 
value was at 250 m in the deep/anoxic layer.

DISCUSSION

The acclimation of Symbiodiniaceae to an extreme environment may rely on 
archaea in blue hole

Almost all genera and clades of Symbiodiniaceae in the SYBH were identified (except 
for Effrenium), and the Cladocopium C1 subclade was a core microbial taxon found in 
all water layers, suggesting that many members of Symbiodiniaceae have developed 
strategies to adapt to lightless extreme environments with high concentrations of 
sulfide, CH4, and N2O. This adaptive pattern or strategy may be diverse and complex 
because Symbiodiniaceae contains abundant species and complex genomes with many 
redundant functional traits (66, 67). However, the alpha diversity of Symbiodiniaceae 
showed a substantially positive correlation with that of archaea, and they remained 
relatively stable in the extreme environments of the SYBH. This stable positive correla

0 m 10 m 20 m

50 m 80 m 85 m

90 m 95 m 100 m

110 m 120 m 150 m

200 m 250 m

Legend

Symbiodiniaceae

Archaea

Fungi

Bacteria

Fungi* 21.8%

Archaea* 24.1%

Ascomycota

10.7%

C15 8.4%

Flavobacteriaceae

16.5%

Nanoarchaeota 18.4%

Fungi*

Ascomycota

Archaea*

Nanoarchaeota

Flavobacteriaceae

C15

Fungi*

52.0%
Nanoarchaeota

15.7%

Vibrio

10.7%

Vibrio

AEGEAN-169 Marine group 8.7%

0 m

AEGEAN-169 Marine group

Fungi*

65.8%Archaea* 11.8%

Rhodobacteraceae sp

11.8%

Cohaesibacter 11.8%

Alphaproteobacteria sp 11.8%

100 m

Rhodobacteraceae sp

Cohaesibacter

Alphaproteobacteria sp

50 m

Fungi*

48.5%

Basidiomycota  11.0%

Chytridiomycota  7.5%

Nanoarchaeota 12.0%

Cspc 11.0%

C1ca  10.0%

Basidiomycota

Chytridiomycota

Cspc

C1ca

Fungi*

48.0%

Ascomycota  6.2%

Chytridiomycota  12.0%

Pochonia bulbillosa 

 7.2%

Agaricomycetes  6.2%

Sva0996 marine group  20.4%

Agaricomycetes

Sva0996 marine group
80 m 85 m

Magnetospiraceae

C3u

C1

Fungi*

63.7%
Ascomycota  12.3%

Chytridiomycota

12.3%

Mycosphaerella tassiana  12.3%

90 m

Mycosphaerella tassiana

95 m

Fungi*

72.8%

Chytridiomycota

6.0%

Archaea* 24.1%

C1m

Fungi*

45.7%

Recurvomyces sp 17.8%

Chromatiales 19.4%

Enterovibrio sp 5.7%

C72 11.3%

C72

Enterovibrio

Chromatiales

Fungi*

63.7%

Penicillium cosmopolitanum

12.3%

Pochonia bulbillosa

10.0%

Archaea*  9.9%

C3u  9.9%

110 m 120 m

Fungi*

63.4%

Basidiomycota 10.6%

Recurvomyces sp

17.8%

D11  13.4%

F4.3b  5.7%

150 m

Fungi*

41.8%

Basidiomycota 11.1%

Chytridiomycota 28.1%

Mycosphaerella tassiana

12.3%

Fungi*

55.9%

Agaricomycetes  38.2%

C1f  5.9%

200 m

Fungi*

80.6%

Recurvomyces sp

9.7%

Archaea*  9.7%

250 m

F3.4b

D11

C1f

Depth (m)
0 50 100 150 200 250

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2
N

e
tw

o
rk

 C
o

m
p

le
x
it
y
 (

L
in

k
 p

e
r 

n
o

d
e

)

y=9e-9x - 4e-6x + 0.0006X - 0.0335X +2.2515
4 3 2

R  = 0.3979
2

Legend
(a) (b)

(c)

10 m 20 m

Penicillium cosmopolitanum

Pochonia bulbillosa

Recurvomyces sp

H2

H2 19.0%

Fungi* 18.4%

Chytridiomycota  3.9%Magnetospiraceae

20.1%

C3u  15.1%

Cspc 13.4%

C1 5.6%
C1ca 4.5%

C1m 6.0%

Archaea* 15.7%

FIG 8 The microbiota interaction network and complexity of microbial community in Sansha Yongle Blue Hole. (a) The microbial interaction network in different 

depths in SYBH. (b) The key microbial drivers of interaction network in the SYBH. (c) The changing rule of microbial network complexity in the SYBH.
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tion was almost unaffected by fungi and bacteria or their synergistic effects in SYBH, 
suggesting that some Symbiodiniaceae species possess the capability to thrive in 
extreme habitats, potentially dependent on the collaborative support of the archaea 
community within SYBH. Symbiodiniaceae species are closely associated with bacte
ria (Endozoicomonas and Ralstonia) (68–70). Nevertheless, the association between 
Symbiodiniaceae and archaea remains unclear (71). However, Thaumarchaeota was able 
to participate in the carbon fixation process of the Porites lutea holobiont, the ecological 
function of which was partly similar to that of carbon-fixing Symbiodiniaceae (72, 73). 
Thus, there was a partial niche overlap between the two microorganisms. In Symbiodi
niaceae, the processes of photosynthesis and carbon fixation can be limited by extreme 
conditions with a lack of light and high levels of anaerobic products in the SYBH. 
However, archaea that live in diverse extreme environments possess sufficient ability 
to respond to such environments (28, 72, 74), which potentially offers an ecological 
foundation for providing extra sources of carbon and nitrogen to specific species 
of Symbiodiniaceae. Archaea in the SYBH also exhibited carbohydrate metabolism, 
carbon fixation and metabolism, and nitrogen and sulfur metabolism and members of 
DPANN, which are dominated archaeal communities. This contributed to the α-diversity 
of archaea in the SYBH and their ability to live in marine extreme habitats that are 
filled with anaerobic products, in addition to showing symbiotic potential (28, 73, 75, 
76). DPANN must rely on interactions with other archaea or microorganisms to obtain 
essential biomolecules, because most DPANN archaea share metabolic capabilities and 
limited genetic material (73). Therefore, diverse unclassified archaea taxa may provide 
key pathways of anaerobic product metabolism and carbon and nitrogen cycling to 
Symbiodiniaceae under lightless conditions and maintain energy acquisition and normal 
life activities of potential symbioses. Excluding photosynthesis, high expression levels 
of genes associated with carbonic anhydrase and ammonium transporters have been 
observed in Cladocoplum, whereas Symbiodinium was capable of fixing carbon and 
assimilating inorganic nitrogen. This process is required for activities, such as bicarbon
ate transport and the function of NAD-specific glutamate dehydrogenase (44), thus 
enhancing pathways regulating core metabolism and key genes involved in carbon and 
nitrogen cycling within Nanoarchaeota and Aenigmarchaeota (73).

The distinct ecological characteristics and environmental response patterns 
among microorganism in SYBH

The environmental response patterns were different among Symbiodiniaceae, archaea, 
bacteria, and fungi of the microbial assembly in the SYBH. The correlation coefficient 
between environmental factors and macro-diversity of Symbiodiniaceae and archaea 
exhibited a greater degree of stability than that observed for bacteria and fungi. The 
alterations observed in the α- and β-diversities of Symbiodiniaceae in response to 
environmental factors within the SYBH exhibited a high level of concordance with the 
corresponding patterns observed in archaea. Furthermore, a notable positive correlation 
was detected between the Shannon index (H′) values of Symbiodiniaceae and archaea, 
implying a potential dependent relationship between these two groups. Symbiodinia
ceae and archaea Chl a response patterns of were different. The value of Chl a has 
often been used to indicate phytoplankton biomass and nutrient concentration in 
the ocean (77–80). However, a negative correlation was observed only between NO3

− 

concentrations and the α-diversities of Symbiodiniaceae and archaea, which were not 
correlated with any other nutrient concentrations. We speculate that the increase in 
α-diversity of archaea may be closely associated with an increase in the species and 
density of phytoplankton, because the potentially symbiotic Nanoarchaeota was found 
to be the main α-diversity contributor in archaeal communities. Nanoarchaeota lacks 
genes for amino acids, nucleotides, lipids, or cofactor biosynthesis (75) and exhibit an 
obligate symbiotic way of life with diverse hosts in extreme environments (81, 82). The 
marine phytoplankton genome contains key genes that Nanoarchaeota lacks (44, 83), 
and high-density and diverse phytoplankton may act as potential hosts for symbiotic or 
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parasitic archaea, thereby increasing the α-diversity of archaea. The 63 phytoplankton 
species that have been found in the SYBH belong to Bacillariophyta (n = 49), Pyrrophyta 
(n = 12), Chrysophyta (n = 1), and Cyanophyta (n = 1) (84). Nutrient concentration was 
the main environmental factor affecting the dissimilarity between Symbiodiniaceae and 
archaea communities. An increase in NH4

+, PO4
3−, and Chl a concentrations reduced the 

β-diversity of Symbiodiniaceae, suggesting that an increase in metabolizable nutrient 
products may improve the stability and environmental tolerance of Symbiodiniaceae 
communities. Symbiodiniaceae promote growth and survival by obtaining NH4

+ and 
PO4

3− from cnidarian hosts (66, 85, 86).
There was an increase in bacterial α-diversity and decrease in bacterial β-diversity 

in response to distinct environmental factors, which indicated that increased α-diver
sity may improve the stability of the bacterial community, thereby assisting bacteria 
to rapidly adapt to the extreme environments of the SYBH. Temperature was the 
most important factor for bacterial α- and β-diversities; however, the ocean regions 
or water layers (mesopelagic) with high bacterial α-diversity generally have low species 
and functional β-diversity and high functional richness (87). The sea surface bacterial 
community displayed the highest Shannon value in the eastern Indian Ocean at 25–
35° S, and the dissimilarity degree of the bacterial community was the lowest in the 
same ocean area (88). Observations of bacterial community variability in the SYBH also 
supported microbial Anna Karenina effects, which suggested that low dispersion of the 
microbiome is associated with strong environmental tolerance and community stability 
under stress. This hypothesis has been verified in animal microbiomes (89–92). However, 
the changing rules of α-diversity for the fungal community were consistent with those 
of β-diversity, suggesting that the environmental response pattern of fungi in the SYBH 
was entirely different from that of bacteria. Within the interaction network in the SYBH, 
fungi, the dominant microbial group, participated in both synergistic and antagonistic 
interactions with all other microorganisms and showed abundant ecological functions. 
Microbial interactions are important drivers of environmental response patterns and 
ecological functions of fungal community structures (64, 93, 94), especially prokaryote 
interactions. The fungal community in the SYBH was dominated by Chytridiomycota, 
some members of which have displayed hyperparasitic abilities; Rozellomycota may be a 
hyperparasite of Chytridiomycota (95). Mycoparasitism of fungi increased the number of 
interactions between fungi and the dissimilarity of the fungal community. An increased 
number of members displaying parasitism or mycoparasitism have similar lifestyles and 
ecological niches (96) and share the same planktonic or fungal host species, leading to 
diverse fungal species combinations (64, 97, 98). Therefore, the increased dissimilarity 
of fungal communities is closely associated with high flexibility, which may contribute 
to more interactions within the fungal community itself or with other microorganisms, 
thereby promoting the environmental response of fungi in the SYBH. The variation 
patterns of fungal communities in SYBH were consistent with the anti-Anna Karenina 
effects. Increased bacterial α-diversity reduced fungal α-diversity, and this may be closely 
associated with the antagonism between bacteria and fungi, which are widespread 
owing to direct competition for resources (64, 94, 99). The SYBH is located in layers 
having dead plankton as the primary source of food, which also act as a carbon source 
for the SYBH (34), possibly causing the antagonistic relationship between the fungi and 
bacteria in the SYBH.

Insight into the adaptability of core microbiome to respond to extreme 
environment in the SYBH

The Cladocoplum C1 subclade dominated the Symbiodiniaceae community and was 
a member of the core microbiome homogenized across all water layers of the SYBH, 
suggesting that the C1 subclade shows potential for adapting to dark, cold, oxygen-defi-
cient, turbid, and other extreme environments. C1 subclade has high photosynthetic 
efficiency (100), which established symbioses with corals in cold marginal reefs and 
acclimated to environments with seasonal low temperatures, low DO, high turbidity, 
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and eutrophication (101–104). Symbiodiniaceae communities of corals in the northern 
South China Sea have been dominated by the C1 subclade (14.2%–83.8%), the rela
tive abundance of which showed a substantially negative correlation with sea surface 
temperature and a positive correlation with Chl a and Turb (65). Cladocopium is a 
functionally diverse and ecologically abundant genus of Symbiodiniaceae (43), and the 
C1 subclade may be the present ancestors of Cladocopium (105, 106). Thus, the C1 
subclade may have evolutionarily diverged earlier than the other types of Cladocopium 
and experienced more local and global climate events, thereby providing a basis for 
some members of the C1 subclade to acquire strong tolerance to extreme environments.

Alteromonas was able to survive in aerobic, minimal oxygen, and anaerobic environ
ments, demonstrating its ability to adapt to high turbidity and sulfides. Alteromonas is 
widely distributed in tropical and temperate oceans (107) and thrives in the Eastern 
Tropical South Pacific-oxygen minimum zones (ETNP-OMZ) (108), because many species 
of Alteromonas are particle-associated microaerophilic bacteria (62). Alteromonas also 
occurs in dark deep oceans; Alteromonas macleodii has been found in the Mediterra
nean and North Atlantic at depths of 0–680 m (109). However, Alteromonas, which is 
rarely found in completely anaerobic and sulfide-filled environments, prefers to live in 
ocean environments with sufficient phytoplankton-associated organic matter and nitrate 
reduction (62, 110). The relative abundance of Alteromonas sp. increased sharply at 200 
and 250 m, suggesting that Alteromonas may have the ability to acclimate to oxygen-free 
extreme environments with high concentrations of turbidity and sulfide. Ralstonia is 
rarely found in the ocean, which is a beneficial bacterium that inhabits coral holobionts 
and maintains an endosymbiotic relationship with Symbiodiniaceae (45, 70). Although 
this study suggests that Ralstonia sp. shows strong adaptability in the SYBH, the relative 
abundance of Ralstonia sp. was highest on the sea surface (0 m) of oligotrophic coral reef 
water regions. Ralstonia, which is a genus of heterotrophic bacteria, displays recurrent 
“bloom” characteristics in the oligotrophic Eastern Mediterranean Sea and is highly 
abundant at intermediate depths in the summer (111). These results indicated that 
Ralstonia exhibits a broad extreme environmental acclimatization threshold and prefers 
to live in surface and intermediate oligotrophic sea areas.

Only two core archaeal ASVs belonging to Nanoarchaeota have been identified, and 
these also dominated the archaeal community in the SYBH. Nanoarchaeota prefer to 
live in aquatic habitats and are highly abundant in microbial communities in extreme 
environments (23, 28, 112). However, this environmental tolerance may rely on the 
symbioses between Nanoarchaeota and other archaea that carry key genes for sulfur 
metabolism (82). Thus, the environmental adaptability of Nanoarchaeota may change 
when they are distributed in the SYBH without compatible symbiotic archaea or with 
only dinoflagellates as potential symbiotic partners (73, 113). This study found that 
the relative abundance of core archaeal ASVs of Nanoarchaeota showed a peak in the 
chemocline (from 80 to 110 m), suggesting that some members of Nanoarchaeota not 
only survive in extreme environments but also prefer to live in ocean water layers 
with decaying organic matter that release oxidizing chemicals and reduced species 
together (36). Nanoarchaeota carries genes only related to glycolysis and gluconeogen
esis pathways associated with carbon metabolism, which may lead to an intermediate 
process of organic matter degradation in the chemocline. However, there were no genes 
related to nitrogen and sulfur pathways in the Nanoarchaeota genome (73), leading to a 
sharp decrease in the relative abundance of core archaeal ASVs in the deep-water layers 
of the SYBH.

The number of core fungi taxa was higher than that of other microorganisms, and 
taxa were predominant in the fungal community of the SYBH, excluding M. tassiana. 
This suggests that the species constituting the core fungi assembly may have a wide 
environmental tolerance threshold. M. tassiana is homogenized in all water layers in 
SYBH, but this genus is also widely distributed in the deep sea and has been frequently 
detected in sediments in the dark and deep sea regions subjected to high pressure in the 
Pacific Ocean (25). The relative abundance of the Recurvomyces sp. in the intermediate 
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and deep-water layers of the SYBH was higher than that in the shallow layers, which 
may be due to low pH and DO environments. Recurvomyces belongs to the Teratosphaer
iaceae family, and some species of this family have survived in acid mine drainage 
situations (AMG; pH 2–8) (114). Thus, a decrease in pH in the 50-m water layers of 
the SYBH may lead to the enrichment of Recurvomyces sp. Penicillium often occur in 
extreme environments (64), the deep sea (115, 116), polar system (117), nuclear reactors 
(118), and international space stations (119–121). P. cosmopolitanum were identified in all 
water layers of the SYBH. Although Penicillium has a strong tolerance to diverse extreme 
environments, it prefers to live in surface oligotrophic sea areas, as demonstrated by its 
highest abundance in the 0-m water layer of the SYBH. Accordingly, the core microbiome 
survived in all water layers of the SYBH with varied environmental gradients, suggesting 
that the core microbiome has a wide environmental tolerance threshold and strong 
adaptability in response to diverse extreme environments.

Microorganism has distinct ecological niches and biogeochemical functions 
in extreme environment of the SYBH

In oxic layers, the carbon metabolism profiles of bacteria and archaea displayed high 
abundance in the 20- and 50-m water layers, respectively. The shallow ocean in the SYBH 
shows extensive degradation of DOC and an increase in modern dissolved inorganic 
carbon concentrations (34, 36), which is due to not only a rapid decline in DO and 
accumulation of H2S but also the carbon metabolism of bacteria and archaea (59). 
Although the carbon metabolism process in the chemocline is dominated by the 
bacterial community, both archaea and bacteria are involved in carbon fixation and 
metabolism in deep anoxic layers. The fungal function group of animal pathogen-plant 
pathogen-undefined saprotrophs was enriched in the lower boundary of the chemo
cline, suggesting that the fungi were the main contributors to the degradation of 
particulate organic matter in the chemocline. Phytoplankton has the highest biomass 
in the 50–85-m water layers located in the upper boundary of the chemocline (37, 84), 
and this may be closely associated with the enrichment of fungal function groups of 
unclassified saprotrophs in the 85-m water layer. These fungi may utilize organic matter 
produced by living phytoplankton (64, 122). Nevertheless, fine particulate organic matter 
produced by the decomposition of phytoplankton and polysaccharides may be enriched 
in the lower boundary of the chemocline because of the strongly stratified system and 
wake water exchange between the chemocline and the deep anoxic layer (36, 58), which 
may provide suitable conditions for the enrichment and organic matter decomposition 
of saprotrophic fungi. However, the concentration of POC in the 110-m layer did not 
increase, suggesting that the decomposition rate of organic matter for microorganisms 
may be higher than its accumulation rate in the chemocline. The active fungal com
munity in the lower boundary of the chemocline was also supported by animal-plant 
pathogens and the maximal complexity of the microbial interaction network that was 
driven by the fungal community.

Regarding nitrogen metabolism in the SYBH, nitrate reduction and nitrogen 
metabolism function profiles are enriched by bacterial and archaeal communities in the 
95-m layer of the chemocline, which is closely associated with an increase in nutrient 
concentrations (36, 59, 62). Although functional genes of aerobic ammonium oxidation 
and complete denitrification are enriched in microbial communities in the chemocline 
(90–100 m) (62), the abundance of these genes may be mainly attributed to bacteria 
rather than to archaea. The abundance of 16S rRNA genes of bacteria (1.0 × 104–5.0 × 
107) was higher than that of archaea (1.0 × 104–1.0 × 105) in the chemocline (80–110 m) 
(59). Additional nitrogen, especially NH4

+, was also utilized by bacteria in the lower 
boundary of the deep anoxic layers (36), because the functional profile of nitrogen 
metabolism in the 250-m water layer was enriched only by the bacterial community (Fig. 
6a).

Although sulfides from the chemocline or deep anoxic layers are rapidly oxidized in 
oxic layers (above 80 m; Fig. 1d), due to being catalyzed by dissolved trace metals (20, 
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36), the short duration of sulfide oxidation may provide survival conditions for archaea 
that are able to metabolize sulfides. This study found that the sulfur metabolism trait was 
enriched by the archaeal community inhabiting layers 50 m above the chemocline (Fig. 
6b). Thus, archaea may be involved in the decomposition of sulfide that spills from the 
chemocline to the oxygen layer in the SYBH. The relative abundance of Desulfobacterota 
increased from 0.14% at 80 m to 5.9% at 100 m, and the functional profile of the sulfur 
relay system was enriched by the bacterial community at 95 m, which suggested that 
abundant bacterial taxa were involved in each step of sulfur cycling in the chemocline. 
The lower boundary of the chemocline was lightless and contained both oxygen and 
sulfide (36), which may have led to a high abundance of functional traits linked to 
dark oxidation of sulfur at 110 m, the profiles of which may have been contributed by 
ε-proteobacteria, which carry the highest number of genes that regulate sulfur-oxidizing 
multienzyme complex quinone-oxidoreductase, in the 110-m water layers (62). In the 
deep anoxic layer, functional profiles of the sulfur relay system were enriched by the 
archaeal community in the 150-m layers, indicating that the archaeal community is more 
competitive in sulfide metabolism than the bacterial community. However, the bacterial 
community showed enrichment characteristics of sulfur metabolism traits at 250 m, 
indicating that bacteria dominated the sulfur cycling process at the lower boundary of 
the deep layers of the SYBH. These two water layers showed active sulfur metabolism, 
as suggested by geochemical research (34). Therefore, archaea and bacteria with sulfur 
metabolism ability may have carved out distinct niches in the deep extreme environ
ments of the SYBH.

Collectively, bacteria and archaea are involved in carbon, nitrogen, and sulfur cycles, 
while fungi play an important role in the microbial metabolism of carbon. These 
microbes have distinct ecological niches and biogeochemical functions in the extreme 
environment of the SYBH.

Conclusions

Six genera and two clades of the Symbiodiniaceae were identified and widely distrib
uted in the chemocline and deep anoxic layers of the world’s deepest blue hole. 
There was a substantially positive correlation between the α-diversities of Symbiodi
niaceae and archaea. This improves our understanding of the adaptive threshold of 
Symbiodiniaceae and indicates the potential reliance of Symbiodiniaceae on archaea 
for acclimating to extreme environments, as a result of a partial niche overlap. There 
was a notable negative association between the α- and β-diversities of the bacterial 
community, suggesting that the change rule of the bacterial community was consistent 
with the Anna Karenina effects. However, the community structure variation of fungi 
was different from that of bacteria, which may be explained by the anti-Anna Karenina 
effects. The core microbiome in the SYBH comprised nine microbial taxa in Cladocopium 
sp., γ-proteobacteria, Nanoarchaeota, and Ascomycota, suggesting that they possess 
strong tolerance and adaptability to sharp environmental gradient variations, which may 
be associated with evolution, acclimatization, and symbiosis. Moreover, the ecological 
profiles of the microbiome showed significant enrichment characteristics among distinct 
water layers, wherein fungi played a key role in carbon metabolism, while bacteria 
and archaea participated in the biogeochemical cycle processes of carbon, nitrogen, 
and sulfur. Thus, these microbes have distinct ecological niches and biogeochemical 
functions in the extreme environment of the SYBH. This study provides insights into the 
community dynamics, tolerance threshold, and response pattern of the microbiome in 
the SYBH, thereby enhancing our understanding of the evolution and ecology of diverse 
microorganisms in extreme hydrospheric environments.
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MATERIALS AND METHODS

Sample collection and environmental parameter measurements

A total of 56 seawater samples (10 L/sample) were collected in 14 depths across oxic, 
chemocline, and anoxic layers (0, 10, 20, 50, 80, 85, 90, 95, 100, 110, 120, 150, 200, and 
250 m; four samples per depth) at the SYBH in June 2021 (Fig. 1). The seawater sample 
collection from the oxic and chemocline layers was conducted using a Conductivity 
Temperature Depth system 12-bottle rosette sampler (General Oceanics, USA), and from 
the deep anoxic layers (150, 200, and 250 m), seawater sample collection was conducted 
using an ROV equipped with GO-Flo bottles (General Oceanics). For microbiome analysis, 
the 5 L of seawater samples were pre-filtered through a 50 µm mixed cellulose esters 
membrane (Millipore, Billerica, USA), and large particles and organisms (e.g., cnidar
ian planula larvae) were removed. Subsequently, a 0.22-µm polycarbonate membrane 
(Millipore) was applied to collect cells of Symbiodiniaceae, bacteria, archaea, and fungi 
in seawater from distinct water layers. All polycarbonate membranes were transferred 
directly in 5-mL cryotubes, which were stored using liquid nitrogen until DNA extraction.

To evaluate the variation of environmental parameter and their association with 
microorganism, temperature (℃), salinity (PSU), DO (mg/L), pH, Turb (FNU), and Chl 
a (μg/L) were measured by conductivity temperature depth at the same time as that 
of water sample collection. The other 5 L of seawater samples in each layers was 
immediately filtered through a 0.45-µm mixed cellulose esters membrane; consequently 
filtrate and filter membranes were also stored at −80℃ for nutrient and SPM (mg/L) 
tests, respectively. NO3

− (μmol/L), NO2
− (μmol/L), NH4

+ (μmol/L), SiO3
2− (μmol/L), and 

PO4
3− (μmol/L) were determined using an QuAAtro auto-continuous flow analyzer (SEAL, 

Germany). The concentration of biogenic gases (N2O, nmol/L; CH4, nmol/L), sulfide 
(μg/L), DOC (μmol/L), and POC (μmol/L) were determined as per previous studies (34, 
36, 59).

Microbiome DNA extraction, polymerase chain reaction amplification, and 
Illumina sequencing

The total microbiome DNA of all collection water layers was extracted using the 
Fast DNA Spin Kit for soil (MP Biomedicals, France), according to the manufacturer’s 
protocol. The concentration and purity of the microbiome DNA were assessed utilizing 
a NanoDrop2000 ultraviolet spectrophotometer (Thermo Fisher Scientific, MA, USA), 
and only high-quality DNA was selected as the template for PCR amplification. The 
primers ITSintfor2 (5′-GATTGCAGAACTCCGTG-3′) (123) and ITS2-reverse (5′-GGGATCCAT
ATGCTTAAGTTCAGCGGGT-3′) (124) were used to conduct PCR amplification of ITS2 from 
the Symbiodiniaceae rDNA. The V3–V4 region of the 16S rRNA gene of bacteria was 
amplified using primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGAC
TACHVGGGTWTCTAAT-3′) (125). The V4–V5 hypervariable region of the archaeal 16S 
rRNA gene was amplified using primers 524F10extF (5′-TGYCAGCCGCCGCGGTAA-3′) and 
Arch958RmodR (5′-YCCGGCGTTGAVTCCAATT-3′) (126), and the fungal ITS2 was amplified 
with the primer pair ITS3F (5′-GCATCGATGAAGAACGCAGC-3′) and ITS4R (5′-TCCTCCGCT
TATTGATATGC-3′) (127). PCR was performed with ~10 ng of DNA, 1.6 µL (5 µM) primer, 0.4 
µL Trans Start Fastplu DNA Polymerase, 0.2 µL BSA, 4 µL 5× FastPfu Buffer, 2 µL of 2.5 mM 
dNTPs, and ddH2O at a total volume of 20 µL. PCR amplification was conducted on an 
ABI GeneAmp 9700 thermocycler with the following program: 3 min at 95°C, followed by 
35 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 45 s, and a final extension at 72°C for 
10 min. The PCR products were run on a 2% ultra-pure agarose gel and purified using a 
Qiagen Agarose Gel DNA Purification Kit (Qiagen, Hilden, Germany). The amplicons were 
sequenced on an Illumina MiSeq platform using the 2 × 300 bp mode based on standard 
protocols at Majorbio (Shanghai, China) after entry quality control and adapter ligation.
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Microbiome identification and bioinformatics processing

QIIME 2 framework (version 2018.8) was used to sequence bioinformatics analysis of 
sequences (128). The DADA2 pipeline in R statistical software (version 4.2.1) was used to 
remove low-quality reads and concatenate the four amplicon reads (129), and qualified 
reads were rarefied to an equal sequencing depth (reads per sample: Symbiodiniaceae, 
17,472; bacteria, 18,126; archaea, 7,665; and fungi, 34,251). After quality control, the 
reads were clustered into ASVs using the DADA2 algorithm. For Symbiodiniaceae ITS2 
data set analysis, the quality-filtered reads were aligned to the ITS2 database using 
BLASTN, and the parameters were set following the pipeline detailed in previous studies 
(45, 65). To accommodate the use of ITS2 as a multi-copy molecular marker, sequence-
based ITS2 analysis was used to identify dominant Symbiodiniaceae sub-clades, and 
the presence of ITS2 sequences at a minimum cut-off of >5% in at least 1 of 56 water 
layer samples indicated biologically relevant entities of Symbiodiniaceae (41, 45, 55, 65, 
130, 131). ASVs were used to analyze ecological indexes (α-diversity and β-diversity) 
of Symbiodiniaceae. However, not all ASVs that were clustered by ITS2 reads belonged 
to Symbiodiniaceae, because the significance of individual base pair differences within 
the Symbiodiniaceae ITS2 sequence was ambiguous (130, 131). Thus, after removing 
chimeras using the DADA2 pipeline (131, 132), the ASVs of ITS2 were aligned to a 
non-redundant ITS2 database using local BLASTN (65, 133). Subsequently, high-confi-
dence ASVs corresponding to Symbiodiniaceae ITS2 were identified and utilized for 
downstream analysis (45, 133). The taxonomic classification of bacterial 16S ASVs, 
archaeal 16S ASVs, and fungal ITS ASVs was conducted using the feature-classifier of 
QIIME 2 (128), which employs a Naïve-Bayes classifier. The classifier aligned the ASVs to 
the Silva v138/16S bacteria, Silva v138/16S archaea, and Unite 8.0/ITS fungi databases. 
A bootstrap confidence level of 0.7 was set for the classification process (134, 135). To 
enhance the quality of the ASV data, chimeric data and sequences originating from 
mitochondria, chloroplasts, and non-microbial sources were removed from the data sets. 
The downstream calculation of ecological indexes was performed using high-confidence 
ASVs of bacteria, archaea, and fungi.

Statistical analyses

The α-diversity (Shannon H′) and β-diversity (Bray-Curtis dissimilarity) indices were 
calculated for the communities of Symbiodiniaceae, bacteria, archaea, and fungi in each 
sample using the high-confidence ASV data set. These calculations were performed 
using the Vegan package (2.6–4) in R (136). To assess the significance of differences in 
microbiome community, PERMANOVA was conducted using a Bray-Curtis dissimilarity 
matrix of high-confidence ASVs with 9,999 permutations. The PERMANOVA results were 
visualized by non-metric dimensional scaling generated by Bray-Curtis distance in R 
(Vegan package) (136). The α-diversity statistics were based on the relative abundan
ces of ASV produced from the subsampled reads, and β-diversity calculations were 
performed based on subsampled and the total read abundances of ASV. Eighteen of 
the environmental factors in SYBH were correlated with α-diversity and β-diversity using 
GraphPad Prism 8 and Pearson’s correlation. The VPA was used to define the contribu
tions of anaerobic (N2O, CH4, and sulfide), physical (depth, Temp, Sal, DO, pH, and Turb), 
and nutrient (NO3

−, NO2
−, NH4

+, SiO3
2−, PO4

3−, DOC, POC, SPM, and Chl a) factors to the 
microbial community structure using the varpart function of the Vegan package (136). 
Redundancy of environmental variables was used to cluster variables using varclus in 
Hmisc R package (137).

Subsequently, QIIME 2 was used to identify the core microbiome (128). ASVs of 
Symbiodiniaceae, bacteria, archaea, and fungi consistently present in all depth groups 
were selected as conservative representative members of the core microbiome in SYBH 
(45). The GLM analysis was used to assess differences in relative abundance of core 
ASV with 1,000 bootstrap permutations, and the groups of depths was regarded as 
a fixed factor. The Student-Newman-Keuls (SNK) test was used for post hoc multiple 

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.00531-23 20

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

20
 O

ct
ob

er
 2

02
3 

by
 1

03
.1

03
.2

44
.1

16
.

https://doi.org/10.1128/spectrum.00531-23


comparisons of significant GLM test results. Moreover, phylogenetic investigation of 
communities by reconstruction of unobserved states 2 (PICRUST2) was applied to 
predict metagenomics functional content (KEGG-Pathway levels 1, 2, and 3) of dominant 
bacterial and archaeal community species (relative abundance > 1%) from the 16S rRNA 
marker gene (138). The “predict_metagenomes.py” was used to predict metagenome 
that the weighted nearest sequenced taxon index (weighted NSTI) was calculated for 
each sample (138). The annotation of prokaryotic taxa (FAPROTAX) was also applied to 
predict the ecological functions of bacterial and archaeal communities (139). Addition
ally, the prediction of fungal ecological function groups was performed using the 
FUNGuild tool (140). The Linear discriminant analysis Effect Size (LEfSe) method was 
used to identify shifts in the metagenome function abundance of microbial communities 
among distinct water layers (LDA threshold value = 2.0, P = 0.05) in the Galaxy web 
application (141).

A network modeling inference was applied to reveal the microbial interactions and 
key driver among Symbiodiniaceae, bacteria, archaea, and fungi in different water 
layers in SYBH with an extreme environment using the co-occurrence (CoNet) plugin 
for Cytoscape 3.9.1 (142, 143). Briefly, dominant Symbiodiniaceae ITS2 sub-clades and 
other microbial ASVs as nodes were used to construct the molecular interaction network. 
The screening threshold was set as taxa present in at least two samples and having 
more than 30 reads. Two measures of correlations (Pearson and Spearman correla
tions), one measure of similarities (mutual information), and two measures of dissimilar
ities (Bray-Curtis and Kullback-Leibler dissimilarity) were applied to estimate pairwise 
correlations among these four microbial taxa in distinct water layers in SYBH. Initially, 
1,000 positive and 1,000 negative edges were retrieved as thresholds for five meas
ures, and 1,000 normalized permutations and 1,000 bootstrap scores were generated 
to mitigate the combinatorial bias. The measure-specific P-value was merged and 
calculated using Brown’s method (144). The Benjamini-Hochberg procedure was used 
to correct for multiple comparisons (145), and edges with merged P-values below 0.05 
were retained. The co-occurrence interaction networks were visualized with Cytoscape 
3.9.1, and the complexity of the interaction network was calculated as linkage density 
(links per ASV or subclade) among Symbiodiniaceae, bacteria, archaea, and fungi (146, 
147). Additionally, the top 10 degrees of nodes in interaction have been defined as key 
drivers of the microbial interaction network in SYBH (41, 45). The correlations between 
network complexity of microbial community and depths were tested by linear fitting 
using Graph Pad Prism 8.
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