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A B S T R A C T

Coral species display varying susceptibilities to biotic or abiotic stress. To address the causes underlying this
phenomenon, we profiled the Symbiodiniaceae clade type, bacterial communities and coral transcriptome re-
sponses in Pavona decussata and Acropora pruinosa, two species displaying different environmental tolerances in
the Weizhou Island. We found that C1 was the most dominant Symbiodiniaceae subclade, with no difference
detected between A. pruinosa and P. decussata. Nevertheless, P. decussata exhibited higher microbial diversity
and significantly different community structure compared with that of A. pruinosa. Transcriptome analysis re-
vealed that coral genes with significantly high expression in P. decussata were mostly related to immune and
stress-resistance responses, whereas, those with significantly low expression were metabolism-related. We
postulate that the higher tolerance of P. decussata as compared with that of A. pruinosa is the result of several
traits, such as higher microbial diversity, different dominant bacteria, higher immune and stress-resistant re-
sponse, and lower metabolic rate.

1. Introduction

Tropical reef-building corals constitute the ecological and con-
structive base of coral reefs, which provide essential ecological goods
and services in an oligotrophic environment (West and Salm, 2003;
Hoegh-Guldberg et al., 2007). However, coral reefs are degrading ra-
pidly in response to climate change (Grottoli et al., 2006; van Hooidonk
et al., 2016; Hughes et al., 2017a, 2017b) and numerous anthropogenic
drivers, such as land-use change and overfishing in the Anthropocene
(Hughes et al., 2017a, 2017b; Hughes et al., 2020). In particular, severe
bleaching events caused by an increase in seawater temperature and
ocean acidification have now affected almost every coral reef ecosystem
worldwide (Hoegh-Guldberg et al., 2007; Harrison et al., 2019). Several
major severe bleaching events have been recorded since 1979 on a
global-scale (Keshavmurthy et al., 2019), have resulted in significant
coral mortality and destruction of the coral community structure in the
Indian (Montefalcone et al., 2018; Head et al., 2019), Pacific (Fox et al.,
2019; Raymundo et al., 2019; Vargas-Ángel et al., 2019), and Atlantic

Oceans (Smith et al., 2019; Teixeira et al., 2019). Consequently, the
imminent threat to the survival of coral reefs from diverse sources raises
the urgent question of whether coral reefs will continue to function
(Pandolfi and Kiessling, 2014).

However, not all coral species are equally susceptible to bleaching
(Loya et al., 2001; Sutthacheep et al., 2013), corals exhibiting
branching morphologies being more susceptible to external interference
that can lead to blanching than those with massive morphologies
(Wooldridge, 2014). For example, numerous unprecedented high tem-
perature events occurred worldwide in 1998 that led to large-scale
bleaching and death of corals (Loya et al., 2001). These catastrophic
events occurred in three oceans, with over 50 countries reporting local
coral bleaching (Loya et al., 2001). Although coral bleaching was ex-
tensive, it did not lead to the absolute death of corals, as the degree of
bleaching at different locations and in different types of corals was
shown to vary markedly (Loya et al., 2001). Similarly, “winners”, “lo-
sers”, and unexpected outcomes occurred in 2015/2016 (Loya et al.,
2001; Hughes et al., 2017a, 2017b; Eakin et al., 2019), during which
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period yet another very strong El Niño–Southern Oscillation occurred
(Santoso et al., 2017), which led to widespread coral mortality, parti-
cularly in the central to western Pacific and Indian Oceans (Hughes
et al., 2017a, 2017b; Stuart-Smith et al., 2018; Riegl et al., 2019;
Sheppard et al., 2019). Notably, significant differences in tolerance
have been observed among corals in the South China Sea. Tolerant
corals still grow well, while sensitive corals have died (Yu, 2012;
Tkachenko and Soong, 2017; Yu et al., 2019). Hence, the key to un-
derstanding the resilience of the coral reef ecosystem is to conduct in-
depth studies regarding the high tolerance mechanism of global coral
albinism.

To date, the differences in coral tolerance have been studied to some
extent. Despite tentative associations between the traits of the coral
host and variable levels of thermal bleaching resistance, some coral
species have been shown to adapt to biotic or abiotic stress. The me-
chanism underlying albinism and mortality of other coral species thus
remains unknown (Wooldridge, 2014). From the perspective of coral
host, the traditional view is that metabolic rates (Gates and Edmunds,
2015), colony tissue thickness (Loya et al., 2001; Dimond et al., 2012;
Qin et al., 2019a, 2019b), host mucus (Fitt et al., 2009; Wooldridge,
2009), host fluorescent pigment concentration (Salih et al., 2000),
heterotrophic feeding (Grottoli et al., 2006; Levas et al., 2013), and
differential gene expression (Barshis et al., 2013; Zhou et al., 2017;
Tang et al., 2018) likely contribute to this dichotomy. It has also been
reported that different combinations of symbiotic bacteria (Liang et al.,
2017; Ziegler et al., 2017) and Symbiodiniaceae (Abrego et al., 2008;
Sampayo et al., 2008; Chen et al., 2019; Qin et al., 2019a; Qin et al.,
2019b; Chen et al., 2020; Qin et al., 2020) are the main factors re-
sponsible for this difference. Overall, scleractinian corals are mainly
composed of several symbiotic organisms; i.e., the cnidarian host,
Symbiodiniaceae, and bacterial communities (Brener-Raffalli et al.,
2018). These partners are involved in a stable symbiosis and effectively
comprise the holobiont (Brener-Raffalli et al., 2018). Therefore, the
environmental stress response of scleractinian corals may not derive
from a single factor, but rather represents a complex response of sym-
biotic interactions.

The Weizhou Island coral reef belongs to the coral suburb of the
northern margin of the South China Sea and serves as a potential refuge
for corals in the context of global climate change (Yu et al., 2019).
Notably, this area has not been studied in depth despite hosting a large
number of coral reefs. Ecological investigation of the Weizhou Island
coral reef ecosystem over the past 30 years has revealed a significant
decline in the coral cover and significant changes in dominant assem-
blages (Yu et al., 2019). Specifically, to date, areas of taxa with high
structural complexity (e.g., Acropora andMontipora) have been replaced
by more tolerant clones (e.g., Porites, Platygyra, Goniastrea, Favites, and
Pavona). In particular, Acroporids corals, which are considered “com-
petitive” corals that grow fast and dominate the reefs in productive
environments, are also the most sensitive to environmental change.
Conversely, the bleaching-tolerant coral Pavona, with characteristics of
fast growth and high tolerance, has become dominant in the high la-
titude coral reef area (Yakovleva and Hidaka, 2004; Mezaki et al., 2014;
Yu et al., 2019) and may represent a source for broadcasting species
during global warming (Glynn and Colley, 2008). Notably, similar to
field monitoring results in which corals with different morphologies
demonstrate different tolerances to acute heat stress, different Synbio-
diniaceae losses may contribute to different tolerances, as observed
between Acropora and Pavona. (Li et al., 2011a, 2011b). Therefore,
studying sensitivity differences between Acropora and Pavona corals in
Weizhou Island might provide critical insights regarding the key factors
influencing coral tolerance, and potential adaptability of the coral reef
ecosystem in the context of future climate change. In this study, a
comprehensive approach was used to explore the causes of tolerance
differences between A. pruinosa and P. decussata. Specifically we clar-
ified the potential molecular regulatory mechanisms involved in the
survival or death of the scleractinian coral by characterizing the

differences with respect three components (Symbiodiniaceae and bac-
terial communities, and coral host transcriptome response) between the
A. pruinosa and P. decussata holobionts.

2. Materials and methods

2.1. Coral sampling

Weizhou Island is the biggest and youngest island in the Beibu Gulf
of the South China Sea (Liu et al., 1991). It provides an ideal habitat for
coral growth. The coral here is mainly distributed at a depth of less than
10 m (Yu et al., 2019). The annual variation range of sea surface
temperature (SST) is 19–30.35 °C(annual average temperature
24.62 °C), sea water pH ranges from 8.0–8.23, annual average sea water
salinity is 31.9‰, and the sea water transparency varies between 3.0
and 10.0 m (Yu et al., 2019). Previous studies concluded that the rapid
degeneration of Weizhou Island is the result of global warming and
escalating anthropogenic impact, such as seawater pollution, un-
sustainable tourism activities, and ongoing overfishing, all of which
degrade the local ecological environment (Yu et al., 2004; Yu et al.,
2019). The average live coral cover declined from 50 to 6.02%
(1984–2015) at a rate of 1.42%﹒y−1 (Wang, 2017). In this study, five A.
pruinosa clones (named Acro1-Acro5) and three P. decussata clones
(named Pavo1-Pavo3) in good growth condition were collected from
coral communities on the north side of Weizhou Island on March 30,
2019. All samples were stored at −80 °C until subsequent analysis.

2.2. Symbiodiniaceae clade type determination

The DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) was used to
isolate genomic DNA from 100 to 200 mg frozen coral samples (Acro1-
Acro3 and Pavo1- Pavo3) following the manufacturer's instructions.
After filtering for quality and purity, high-quality DNA was used as a
template for PCR. Based on previous reports (Chen et al., 2019), pri-
mers ITS-J1F and ITS-J2R were used to amplify the ITS2 genes. Pre-
pared amplicons were submitted to Shanghai Majorbio Bio-pharm
Technology Co., Ltd. (Shanghai, China) for sequencing using an Illu-
mina MiSeq platform (San Diego, CA, USA) (300 bp × 2). High-
throughput sequencing data was submitted to the NCBI Sequence Read
Archive (accession number: PRJNA599041). ITS2 sequence analysis
data and operational taxonomic unit (OTU) data were analyzed to de-
termine the type and count the diversity of symbiotic Symbiodiniaceae,
as previously described. (Chen et al., 2019). In order to ensure the
accuracy of the subsequent analysis, strict quality control and sequence
filtering criteria were applied based on previous studies (Chen et al.,
2019; Ziegler et al., 2017). The consolidated PEAR data was used to
obtain full-length ITS2 rDNA fragments (Zhang et al., 2014), and chi-
meras were checked using MOTHUR (Chen et al., 2019). Primers se-
quences were trimmed using CUTADPAT (Ziegler et al., 2017). All se-
quences were aligned with the sequences deposited in the ITS2 database
using BLASTn, with previously described pipeline and parameter set-
tings (Chen et al., 2019). A minimum cut-off of> 5% was used in this
study to allow comparison with the denaturing gradient gel electro-
phoresis (DGGE) results from previous studies and avoid integrative
genomics viewer (IGV) interference (Ziegler et al., 2017). MOTHUR
(1000 reads per sample) was used for subsequent subsampling (Ziegler
et al., 2017). The threshold of retention length of ITS2 sequences was
90%, with a similarity threshold>97% for operational taxonomic
units (OTUs) (Arif et al., 2014). OTUs with the most abundant se-
quences while not containing any non-Symbiodiniaceae OTUs were
used for subsequent analysis.

2.3. Microbial diversity and composition analysis

Total genomic DNA was extracted from six frozen coral samples
(Acro1- Acro3 and Pavo1- Pavo3) using the TIANamp Marine Animals
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DNA Kit (Tiangen Biotech Co., Ltd., Beijing, China) following the
manufacturer's instructions. The quality of all DNA samples was
checked prior to further use. The 16S rRNA V3-V4 hypervariable re-
gions were PCR-amplified using previously described cycling condi-
tions, and primers 338F and 806R (Liang et al., 2017). The high-
throughput sequencing mechanism was the same as that used for ITS2
sequencing as described above. High-throughput sequencing data was
deposited in the NCBI Sequence Read Archive (accession number:
PRJNA599045). The raw sequences were demultiplexed, quality-fil-
tered by the software platform Trimmomatic, and merged by FLASH,
with previously described criteria and parameter settings (Bolger et al.,
2014; Yao et al., 2019). After removing the chimeric sequences, OTUs
were selected at a 97% similarity cut-off (Edgar, 2010). In this study,
alpha diversity estimations of OTU (Schloss et al., 2013), principal
coordinates analysis (PCoA), microbial composition, and LEfSe analysis
were performed on the free online platform of Majorbio Cloud Platform
(www.i-sanger.com) (Liu et al., 2019). The SILVA 119 16S rRNA da-
tabase (https://www.arb-silva.de) was used for sequence alignment
with the RDP Classifier, using a confidence threshold of 70%. PCoA was
conducted according to the unweighted UniFrac distance matrix cal-
culated at the OTU level (Yao et al., 2019). Microbial composition at
the phylum and genus levels was indicated using a pie chart and heat
map. Statistically different biomarkers between A. pruinosa and P. de-
cussata were searched using LEfSe analysis (Segata et al., 2011).

2.4. Coral transcriptome analysis

Frozen coral samples (Acro1- Acro5 and Pavo1- Pavo3) were sub-
mitted to Shanghai Majorbio Bio-pharm Technology Co., Ltd.
(Shanghai, China) for total RNA extraction, whole transcriptome library
preparation, and RNA sequencing. Equal quantities of high-quality RNA
were subsequently sequenced on a HiSeq 4000 instrument (Illumina),
with 150 nucleotide long resultant paried-end reads. Prior to de novo
assembly, SeqPrep was used to filter the quality of the raw sequences.
De novo assembly of all cleaned reads was carried out using the Trinity
program with default parameters (Grabherr et al., 2011). All samples
had the same sequencing depth. The assembled sequence was used as a
reference sequence for subsequent analysis (Tang et al., 2018). Clean
reads from each sample were mapped to the assembled unigenes to
assess the quality of the assembly (Tanwar et al., 2017). After assembly,
annotations for the assembled unigenes were carried out via BLAST in
six databases (Non-redundant (NR), Swiss-prot, Pfam, Clusters of Or-
thologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG)) (Evalue = 1 × 10−5) (Li et al., 2019).
The BLASTx method, a widely accepted method in transcriptome stu-
dies on scleractinian coral, was used to distinguish these coral tran-
scripts (Zhou et al., 2017; Tang et al., 2018; Zhang et al., 2019).
Transcripts showing higher similarity to Acropora digitifera, Orbicella
faveolata, Stylophora pistillata, Hydra vulgaris, Exaiptasia pallida, and
Amphimedon queenslandica were binned as coral host transcripts. The
expression levels of genes and transcripts were analyzed by RSEM, with
a quantitative index of gene expression in transcripts per million (TPM)
(Li and Dewey, 2011). Differentially expressed genes (DEGs) between
A. pruinosa and P. decussata were then obtained used DESeq2 (false
discovery rate (FDR) < 0.05 and expression fold change ally (Love
et al., 2014). Compared with A. pruinosa, up-regulated DEGs in P. de-
cussata indicated that the baseline expression of these genes in P. de-
cussata is higher than that in A. pruinosa. KEGG annotation analysis of
all genes was performed using KOBAS 2.1.1 according to default
parameters. The method of KEGG enrichment analysis of the DEGs was
over-representation analysis (ORA) using the Fisher's exact test
(p < .05) (Backes et al., 2007). High-throughput sequencing data have
been deposited in the NCBI Sequence Read Archive (accession number:
PRJNA599447).

3. Results

3.1. The Symbiodiniaceae community did not differ between A. pruinosa
(Acro) and P. decussata (Pavo)

Symbiodiniaceae compositions in subtropical scleractinian coral A.
pruinosa and P. decussata are shown in Fig. 1. C1 was the most dominant
subclade, with a mean relative abundance of 83.49%. With redpect to
composition and relative abundance, although some slight differences
were observed, the community structure of symbiotic Symbiodiniaceae
in all samples remained stable and significant difference were not ob-
served between the two groups.

3.2. Differences in symbiotic bacterial communities between A. pruinosa
(Acro) and P. decussata (Pavo)

In the present study a total of 350, 789 processed bacterial se-
quences were assigned to 6, 695 OTUs at 97% similarity. The near-
saturated rarefaction curve indicated that the sequencing results could
be used for subsequent analysis. The α diversity index (Chao) showed
no significant difference in OTU richness between the two groups.
However, the Shannon (p = .005) and Simpson (p = .02) indices
showed higher microbial diversity in Pavo compared with Acro
(Table 1). Subsequent analysis using unweighted UniFrac distances and
PCoA revealed stronger clustering of the established microbial com-
munities, as shown in Fig. 2.

A community analysis pie chart was used to illustrate the overall
microbial community structures in Acro and Pavo groups (Fig. 3). The
most abundance phyla in the two groups included Proteobacteria, Cy-
anobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Deino-
coccus-Thermus. Differences were also detected between the two
groups. The dominant phylum of the Acro group was Cyanobacteria,
with a mean relative abundance of 54. 79%, whereas Proteobacteria
(44.59%) was the dominant phylum of the Pavo group. At the genus

Fig. 1. Bar plot of the relative abundance of different Symbiodiniaceae sub-
clades in coral samples. Each bar represents the relative abundance of different
Symbiodiniaceae subclades in one sample.

Table 1
Sequencing data summary and community diversity.

Estimators Acro-Mean Acro-Sd Pavo-Mean Pavo-Sd Pvalue

Sobs 592.33 135.4 1453.7 560.78 0.1098
Ace 661.51 114.77 1832.9 892.39 0.1488
Chao 649.17 123.69 1778.1 786.49 0.1275
Shannon 2.3645 0.59559 4.9213 0.50514 0.005162
Simpson 0.29635 0.087572 0.042967 0.027997 0.02835
Coverage 0.99711 0.00048929 0.98948 0.007117 0.2039
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level, norank_f_norank_o_Chloroplast was the most abundant genus with
a relative abundance of 54.23%. Conversely the abundance of all
genera was relatively low in the Pavo group with un-
classified_o__Rhizobiales, the most abundant genus, accounting for only
8.38%. Significant differences in community structure existed between
the Acro and Pavo groups, as shown in the heat map (Fig. 4).

The LEfSe tool allows the analysis of microbial community data for
any clade (Pedamallu et al., 2016)and was used to identify specialized
communities in the coral samples, with statistical analysis performed
from the phylum to genus level (Fig. 5). A total of 39 taxa were identified
as exhibiting significant differences, including 18 in the Acro group, and
21 in the Pavo group. Three phyla, two classes, four orders, five families,

and seven genera were significantly higher in the Pavo group. Note
that at the genus level, microbes from norank_f__Rhizobiaceae,
unclassified_f__Rhizobiaceae, unclassified_o__Rhizobiales, Ruegeria,
unclassified_f__Rhodobacteraceae, Sva0996_marine_groupk, and un-
classified_f__Flavobacteriaceae were significantly more prominent in the
Pavo group. In comparison, the prominent genera in the Acro group
included norank_f__norank_o__Chloroplast, MWH_UniP1_aquatic_group,
unclassified_c__Alphaproteobacteria, unclassified_p__Prateobacteria, Vi-
brionimonas, and norank_f__env_OPS_17.

3.3. High-resolution transcriptome profiling identified potential regulators of
tolerance differences between P. decussata and A. pruinosa

In the present study, different transcriptional responses of A. prui-
nosa and P. decussata were evaluated using the RNA-Seq method. We
randomly selected eight samples to construct the transcriptome library.
After filtering low-quality sequences and adaptor sequences, 442, 461,
918 clean reads were obtained from all the libraries. The numbers of
reads, Q30, GC content, and mapping statistics in each library are
shown in Table 2.

After library calibration, the expression of 63,235 coral genes were
compared between the Acro and Pavo groups. The two groups could be
clearly distinguished through PCoA based on the expression within the
total transcriptome (Fig. 6A). In comparison, biological replicates
within each group clustered together, as revealed by the heat map
(Fig. 6B) and exhibited high Pearson's correlation coefficient values,
whereas samples from different groups were separated.

In order to reveal the potential molecular mechanism underlying
tolerance difference between P. decussata and A. pruinosa, we analyzed
DEGs between the two groups. We determined that a total of 17,285
unigenes were significantly more highly expressed and 15,187

Fig. 2. Principal Coordinates Analysis (PCoA) of the unweighted UniFrac dis-
tance matrix representing differences in community structure at the operational
taxonomic unit (OTU) level.
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Fig. 3. Microbial composition of each group at the phylum and genus level. (A), Acro group at the phylum level. (B), Pavo group at the phylum level. (C), Acro group
at the genus level. (D), Pavo group at the genus level.
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significantly lower expressed in coral (Table S1). To further understand
the biological functions of unigenes, the KEGG pathway database was
employed (Tables S2, S3) to assess the degree of KEGG enrichment
based on richness factor, false discovery rate (FDR), and number of
genes. The significantly more highly expressed and lower expressed
coral genes were mainly enriched in 10 and 7 KEGG pathways, re-
spectively (Fig. 7). The high expression unigenes in the Pavo group
were related to immune and stress-resistant responses through KEGG
pathway analysis, whereas the low expression unigenes were associated
with metabolism. Notably, nitrogen metabolism in the Pavo group was
significantly lower than that in the Acro group. The heat map identified
48 DEGs involved in the nitrogen metabolism pathway, including 23
high expression and 25 low expression genes (Fig. 8A). KEGG mapping
of the 48 DEGs involved in the nitrogen metabolism pathway is shown
in Fig. 8B.

4. Discussion

Ecological investigation of the coral reef ecosystem of Weizhou
Island over the past 30 years has demonstrated that resistant biotype
scleractinian coral P. decussata exhibits higher environmental tolerance
than the “competitive” coral A. pruinosa (Yu et al., 2019). In the present
study, we used a holistic approach to comprehensively survey the
molecular characteristics underlying tolerance differences between
these coral species. Symbiodiniaceae composition did not differ be-
tween the two corals, although the diversity of symbiotic bacteria in P.
decussata was significantly higher than that in A. pruinosa and the
community structures of symbiotic bacteria also differed significantly.
In particular, the dominant bacteria comprised nitrogen fixing bacteria
norank_f_norank_o_Chloroplast and unclassified_o__Rhizobiales. Fur-
thermore, transcriptome analysis revealed that the high expression
genes in P. decussata were mainly related to immune and stress-re-
sistance responses, whereas the low expression genes were mainly as-
sociated with metabolic pathways including nitrogen metabolism.

4.1. The two corals exhibited different environmental tolerances albeit
similar Symbiodiniaceae composition

The coral symbiont Symbiodiniaceae, a photosynthetic dino-
flagellate, is an important component of coral holobionts and a direct
participant in the environmental stress response (Gong et al., 2018).
The results of numerous field and indoor experiments on coral
bleaching have revealed that different combinations of host and sym-
bionic Symbiodiniaceae could influence the growth rate and response
to environmental stress of coral, which might also provide ecological
advantages (Baker, 2001; Little et al., 2004). In particular, members of
Symbiodiniaceae clade D have attracted considerable attention as in-
creasing evidence suggests that this clade is beneficial to the ability of
coral to respond to environmental stress and that they out-compete
other, perhaps more functionally beneficial Symbiodiniaceae (Stat
et al., 2008; Chakravarti and van Oppen, 2018). Notably, some studies
have also found that the relative abundance of D-type Symbiodiniaceae
increased significantly after several bleaching events (Baker et al.,
2004). Furthermore, Symbiodiniaceae density is also considered to be
related to the coral heat tolerance (Qin et al., 2019a, 2019b). For ex-
ample, massive corals with higher heat tolerance, such as Porites and
Favia, usually exhibit a higher density of Symbiodiniaceae than that in
branching corals Acropora (Li et al., 2008, 2011a, 2011b).

Moreover, according to the “adaptive bleaching hypothesis”, corals
may adapt to environmental stress by altering the community structure
and density of symbiotic Symbiodiniaceae as a self-protection me-
chanism (Baker et al., 2004; Fautin and Buddemeier, 2004; Stat et al.,
2006). Nevertheless, coral bleaching represents the main malignant
result of environmental stress and also represents the main cause of
global coral reef ecosystem degradation. Understanding the biological
mechanism and process of coral bleaching under environmental stress
therefore reflects a primary focus in the field of coral reef research. In
particular, with the rapidly deteriorating environment, a central issue
to determining whether corals can survive in the future is whether the
level of increased tolerance achieved through symbiont density or
composition in corals would be sufficient to survive anticipated in-
creases in SST (Berkelmans and van Oppen, 2006).

5

4

3

2

1

Pavo Acro

norank f norank o Chloroplast
norank f Caldilineaceae
norank f norank o norank c TK17
Muricauda
BD1 7 clade
unclassified f Sphingomonadaceae
unclassified f Rhizobiaceae
Mastigocoleus BC008
Aliiroseovarius
unclassified o Betaproteobacteriales
norank f norank o norank c Gemmatimonadetes
norank f A4b
PAUC26f
Cribrihabitans
norank f Rhizobiaceae
unclassified f Flavobacteriaceae
Sva0996 marine group
Ruegeria
unclassified f Rhodobacteraceae
unclassified o Rhizobiales
Thermus
norank f norank o SAR202 clade
Rhodococcus
unclassified f Burkholderiaceae
Microbacterium
Ralstonia
unclassified k norank d Bacteria
Vibrionimonas
unclassified p Proteobacteria
unclassified c Alphaproteobacteria

Fig. 4. Heat map showing the relative abundance of bacterial genera in Acro and Pavo groups.
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In the present study, the communities of Symbiodiniaceae in A.
pruinosa and P. decussata were dominated by clade C1 Symbiodiniaceae,
which is consistent with fast growing small polyp scleractinian coral
(Little et al., 2004), and their growth profiles (Huston, 1985). In ad-
dition, particular symbiont genotypes may be the outcome of environ-
mental selection and co-evolution (Thornhill et al., 2017). For example,
previous studies have shown that the community structure of symbiotic
Symbiodiniaceae may be influenced by geographical region rather than
coral host (Chen et al., 2019). Weizhou Island is located in the north-
western sector of the South China Sea, within the high-latitude mar-
ginal coral reef areas of the Pacific Ocean. Notably, scleractinian coral
in high-latitude regions are generally considered more likely to form
symbiosis with clade C Symbiodiniaceae (Chen et al., 2019), with
subclade C1 especially representing a generalist type associated with

most coral species in high-latitude marginal corals (De Palmas et al.,
2015). Although it has been reported that change in community
structure and density of Symbiodiniaceae may contribute the differ-
ences in coral tolerance (Qin et al., 2019a, 2019b), the present study
demonstrated the stability of clade C1 Symbiodiniaceae between A.
pruinosa and P. decussata in the subtropical region. Thus, clade C1
Symbiodiniaceae may not constitute the main factor responsible for the
tolerance differences observed in these species. Nevertheless, despite
the lack of difference in symbiotic Symbiodiniaceae, the possibility
remains that Symbiodiniaceae may play a potential role in the tolerance
difference of A. pruinosa and P. decussata. In particular, the “Symbio-
diniaceae-rare biosphere” serves as the basis of symbiotic Symbiodi-
niaceae community plasticity (Shade et al., 2014).

Fig. 5. Microbial communities with statistically significant differences. A cladogram displaying the different microbiota structure from phylum to genus level. Linear
Discriminant Analysis score > 4. Different-colored regions represent different constituents (red, Acro; blue, Pavo; yellow: non-significant). The diameter of each
circle is proportional to the abundance of the group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Transcriptome mapping statistics.

Library Raw reads Clean reads Q30 (%) GC content (%) Mapped rate to coral transcripts (%) Mapped rate to Symbiodiniaceae transcripts (%)

Acro1 53,966,282 53,738,064 96.32 47.56 34.02 24.63
Acro2 57,457,274 57,195,248 96.44 50.07 21.88 38.66
Acro3 54,036,550 53,790,878 96.48 47.24 32.98 24.7
Acro4 51,722,350 51,465,948 96.28 45.79 35.21 19.96
Acro5 58,798,204 58,528,706 96.27 46.62 38.76 18.85
Pavo1 53,182,822 52,910,728 96.34 49.25 20.01 34.2
Pavo2 56,029,808 55,731,492 96.14 48.42 27.27 26.98
Pavo3 59,440,294 59,100,854 96.35 48.89 20.72 33.16
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4.2. Higher bacterial diversity and distinct community structure correlated
with high tolerance of P. decussata

Recent studies have revealed that typically 100 s of bacterial taxa
are directly related to coral hosts (Ainsworth et al., 2015; Neave et al.,

2017), and participate in coral growth and biotic and abiotic stress
responses (Reshef et al., 2006). Because of the importance of symbiotic
bacteria for tolerance of the coral holobiont (Ziegler et al., 2017), we
attempted to explore the differences in the composition of bacterial
communities and their potential role in the different tolerance of A.
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pruinosa and P. decussata. Notably, although we observed stable com-
munity structure of Symbiodiniaceae, the symbiotic bacteria differed
significantly between A. pruinosa and P. decussata, suggesting a
changeable coral-prokaryotic partnership (Ziegler et al., 2019). Sym-
biotic bacteria of coral are known to change rapidly under environ-
mental stress, which may promote the adaptation of the coral host to
environmental stress (Ziegler et al., 2017). PCoA clustering analysis
revealed that the structure of the symbiotic bacteria of A. pruinosa
consistently differed from that of P. decussata. This parallels the findings
of previous studies that demonstrated variations in the communities of
prokaryotic partners across different corals or different regions (Liang
et al., 2017; Ziegler et al., 2017). In the present study, compared with A.
pruinosa, we observed higher microbial diversity in P. decussata, which
might allow the host to change its main symbiont bacteria to a related
species that performs better under certain conditions to maintain the
physiological functions of the holobiont. At the microbial level, higher
diversity facilitates the ability of symbionts to resist infection, absorb
nutrients, and maintain the aggregate function of a healthy microbiome
(Flanagan et al., 2007; Pollock et al., 2019). At the macroscopic scale,
lower diversity within A. pruinosa may increase the risk of sudden and
potentially irreversible ecosystem collapse (Hooper et al., 2012), which
may also affect the overall biological resilience of the corals (Zaneveld
et al., 2017).

The bacterial communities of samples of A. pruinosa differed sig-
nificantly from those of P. decussata. Because the two kinds of scler-
actinian coral in this study were collected from the same marine en-
vironment, this finding further verified the role of the host in regulating
the community structure of symbiotic bacteria (Souza et al., 2016).
Notably, we found that the dominant bacteria in both corals were re-
lated to nitrogen fixation. As corals usually grow in an oligotrophic
marine environment. Symbiotic nitrogen fixing bacteria, potentially
provide corals with a supplemental source of fixed nitrogen in nitrogen-
poor reef waters (Lema et al., 2014). In particular, Rhizobiaceae were
found to constitute key “hub” taxa associated with P. decussata. As in
terrestrial plants, Rhizobiaceae, have evolved a mutually beneficial
mechanism with coral hosts, which may contribute fixed nitrogen to
coral symbionts (Lema et al., 2014; Lema et al., 2012) and contribute
significantly to host nitrogen cycling (McDevitt-Irwin et al., 2017;
Quigley et al., 2019). In comparison, the dominant bacteria of A.
pruinosa was cyanobacteria, which is associated with photosynthesis-
dependent nitrogen fixation in coral reefs (Lesser et al., 2004). Al-
though the different effects of the two diazotrophic bacteria on the
nitrogen cycle of the host have not been confirmed, the difference in
dominant bacteria may also be related to differences in host tolerance
(Liang et al., 2017).

In addition, we found that Vibrionimonas abundance differed sig-
nificantly between A. pruinosa and P. decussata. Vibrionimonas is gen-
erally recognized as a potentially pathogenic and opportunistic micro-
bial taxa, and may flourish when the coral is stressed and cannot
regulate its microbiome (McDevitt-Irwin et al., 2017). Relatively higher
levels of this genus may also contribute to increased sensitivity of A.
pruinosa to environmental stress compared with that of P. decussata. In
turn, these results potentially suggest higher microbial diversity and
different bacterial community are responsible for the higher tolerance
of P. decussata to environmental stress.

Thus, although our data do not indicate whether these microbial
community differences contribute to or result from increased host tol-
erance of P. decussata, the observed patterns concur with the hypothesis
that microbial adaptation may play an important role in promoting the
acclimatization of coral to environmental changes.

4.3. Immune defense and metabolic regulation may contribute to tolerance
differences between A. pruinosa and P. decussata

The transcriptome of P. decussata differed significantly from that of
A. pruinosa. High expression coral genes in the Pavo group were related

to immune and stress-resistance responses. The immune system con-
stitutes the core component of the coral host defense system and is
considered to be responsible for recognition and clearance of patho-
genic organisms or materials (Tang et al., 2018).Enhancement of this
system increases the resistance of scleractinian corals to biotic and
abiotic stresses (Ben-Haim et al., 2003). For example, the phosphati-
dylinositol signaling system is important in the response to abiotic
stress (Lin et al., 2004), which plays a critical role in modulating the
oxidative stress signal from the plasma membrane under heat stress
(Wang et al., 2018). It was also reported that heat-tolerant Pyropia
haitanensis could increase the transduction of phosphatidylinositol
signal to resist heat stress (Wang et al., 2018). In Echinochloa spp., the
resistant biotype has more DEGs involved in porphyrin and chlorophyll
metabolism than the sensitive biotype (Gao et al., 2019). For example,
hypoxia-inducible factor and NF-κB are considered central transcription
factors of the innate immune response (Rius et al., 2008). Moreover,
these two factors are interdependent and mutually regulated (Taylor,
2008; D'Ignazio et al., 2016). Specifically, NF-κB modulates the ex-
pression of HIF-α (Rius et al., 2008) and HIF-1β (van Uden et al., 2011)
in addition to HIF target genes (Rius et al., 2008). Increased HIF-1
expression and activity can mediate NF-κB activity either positively or
negatively (D'Ignazio et al., 2016; Taylor, 2008), thereby contributing
to maintaining the balance of oxygen homeostasis in animals (Song
et al., 2018).

Comparatively, KEGG pathway analysis revealed that low-expres-
sion coral genes were associated with metabolism. In particular, ni-
trogen metabolism of P. decussata was significantly lower than that of A.
pruinosa. According to previous studies, scleractinian coral Acropora
digitifera larvae and other marine invertebrates enhanced their survival
by slowing down their metabolism in response to stress caused due to
seawater acidification (Reipschläger and Pörtner, 1996; Basile et al.,
2005; Nakamura et al., 2011). It has also been reported that increased
stress tolerance tended to be associated with decreased metabolic rate
in naked mole-rats Heterocephalus glaber (Kirby et al., 2018) and Dro-
sophila (Hoffmann and Parsons, 2009), whereas the narrower thermal
window of endemic high-Antarctic fish may be due to their higher
metabolic rates and energy costs (Sandersfeld et al., 2017). Therefore,
we speculated that a lower metabolic rate may be related to the higher
tolerance of P. decussata. Moreover, the difference in nitrogen meta-
bolism may also be related to the difference in symbiotic nitrogen fixing
bacteria. Although the important roles of cyanobacteria and rhizobia in
the nitrogen cycle of corals have been reported in previous studies
(Lesser et al., 2004; Lema et al., 2012), the extent and ubiquity of this
relationship remains unknown (Olson et al., 2009). Notably, this dif-
ference may be an indicator of a specific association between coral and
diazotrophic microorganisms, suggesting that the symbiotic relation-
ship between coral host and nitrogen fixing bacteria is species specific
(Lema et al., 2012).

5. Conclusions

In this study, we compared the differences of the three main com-
ponents (Symbiodiniaceae communities, bacterial communities, and
coral host transcriptome response) of A. pruinosa and P. decussata. Our
findings highlighted that the higher environmental tolerance of P. de-
cussata is likely due to a complex biological process involving the coral
host, Symbiodiniaceae, and bacteria. We hypothesize that the higher
tolerance of P. decussata compared with that of A. pruinosa might result
from a complex biological process caused by higher symbiotic bacterial
diversity, different dominant bacteria, higher host immune and stress
resistance responses, and lower metabolic rate. Although we found that
these differences may lead to higher environmental tolerance, the
molecular mechanism underlying the tolerance difference remains un-
certain owing to the complexity of coral symbionts. Because of the
rapid global climate change in the Anthropocene, the highly tolerant P.
decussata may provide hope for the ability of coral reefs to acclimatize
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to habitat degradation in the future. Further evaluation of the mole-
cular mechanisms underlying the likelihood for coral reef survival or
death is therefore warranted.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.marpolbul.2020.111199.
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